Zhang Wei, Luo Lianshun, Liu Zhongyu, Zhao Fangming, Kong Jie, Jin Rongchao, Luo Yi, Zhou Meng
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui 230026, P. R. China.
Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Sci Adv. 2025 Jun 13;11(24):eadx2781. doi: 10.1126/sciadv.adx2781. Epub 2025 Jun 11.
The coherent vibrational dynamics of gold nanorods with varying aspect ratios have been extensively studied by time-resolved spectroscopy to reveal their mechanical properties, but quantum-sized rods (transverse diameter < 2 nanometers) remain unexplored. Here, we present a comprehensive study on the coherent vibrations of atomically precise gold quantum rods with distinct energy gaps (0.6 to 1.3 electron volts), all sharing the same radial dimension but with increasing aspect ratios. Time-resolved spectroscopy reveals ultrafast internal conversion and intersystem crossing, along with oscillatory features superimposed on transient signals that unveil coherent vibrational dynamics. Two dominant modes are identified: a longitudinal mode scaling with rod length and a transverse mode independent of aspect ratio. Theoretical simulations support these findings and clarify the structural origins of the observed vibrational behavior. Our study provides a framework for designing atomically precise gold quantum rods with tailored optical and vibrational properties, advancing the understanding and application of anisotropic quantum materials.
通过时间分辨光谱对不同纵横比的金纳米棒的相干振动动力学进行了广泛研究,以揭示其力学性质,但量子尺寸的棒(横向直径<2纳米)仍未被探索。在此,我们对具有不同能隙(0.6至1.3电子伏特)的原子精确金量子棒的相干振动进行了全面研究,这些量子棒都具有相同的径向尺寸,但纵横比不断增加。时间分辨光谱揭示了超快的内转换和系间窜越,以及叠加在瞬态信号上的振荡特征,这些特征揭示了相干振动动力学。确定了两种主导模式:一种与棒长度成比例的纵向模式和一种与纵横比无关的横向模式。理论模拟支持了这些发现,并阐明了观察到的振动行为的结构起源。我们的研究为设计具有定制光学和振动性质的原子精确金量子棒提供了一个框架,推动了对各向异性量子材料的理解和应用。
Chem Sci. 2022-6-17
Proc Natl Acad Sci U S A. 2024-3-5
Acc Chem Res. 2024-9-17
Nano Lett. 2011-7-6
Phys Chem Chem Phys. 2020-11-18
Small Methods. 2025-5-19
J Chem Phys. 2007-8-21
Phys Chem Chem Phys. 2022-9-21
Angew Chem Int Ed Engl. 2025-3-10