Croce Giancarlo, Lani Rachid, Tardivon Delphine, Bobisse Sara, de Tiani Mariastella, Bragina Maiia, Perez Marta A S, Michaux Justine, Pak Hui Song, Michel Alexandra, Gehret Talita, Schmidt Julien, Guillame Philippe, Bassani-Sternberg Michal, Zoete Vincent, Harari Alexandre, Rufer Nathalie, Hebeisen Michael, Dunn Steven M, Gfeller David
Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
Sci Adv. 2025 Jun 13;11(24):eads5589. doi: 10.1126/sciadv.ads5589. Epub 2025 Jun 11.
T cells targeting epitopes in infectious diseases or cancer play a central role in spontaneous and therapy-induced immune responses. Epitope recognition is mediated by the binding of the T cell receptor (TCR), and TCRs recognizing clinically relevant epitopes are promising for T cell-based therapies. Starting from a TCR targeting the cancer-testis antigen NY-ESO-1 epitope, we built large phage display libraries of TCRs with randomized complementary determining region 3 of the β chain. The TCR libraries were panned against NY-ESO-1, which enabled us to collect thousands of epitope-specific TCR sequences. Leveraging these data, we trained a machine learning TCR-epitope interaction predictor and identified several epitope-specific TCRs from TCR repertoires. Cellular assays revealed that the predicted TCRs displayed activity toward NY-ESO-1 and no detectable cross-reactivity. Our work demonstrates how display technologies combined with TCR-epitope interaction predictors can effectively leverage large TCR repertoires for TCR discovery.
靶向传染病或癌症中表位的T细胞在自发和治疗诱导的免疫反应中起核心作用。表位识别由T细胞受体(TCR)的结合介导,识别临床相关表位的TCR对基于T细胞的治疗具有前景。从靶向癌-睾丸抗原NY-ESO-1表位的TCR开始,我们构建了β链互补决定区3随机化的大型TCR噬菌体展示文库。针对NY-ESO-1对TCR文库进行淘选,这使我们能够收集数千个表位特异性TCR序列。利用这些数据,我们训练了一个机器学习TCR-表位相互作用预测器,并从TCR库中鉴定出几个表位特异性TCR。细胞分析表明,预测的TCR对NY-ESO-1显示出活性,且未检测到交叉反应性。我们的工作展示了展示技术与TCR-表位相互作用预测器如何有效地利用大型TCR库来发现TCR。