Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, DTU, 2800, Kgs. Lyngby, Denmark.
Sci Rep. 2023 Sep 26;13(1):16147. doi: 10.1038/s41598-023-43048-3.
Pairing of the T cell receptor (TCR) with its cognate peptide-MHC (pMHC) is a cornerstone in T cell-mediated immunity. Recently, single-cell sequencing coupled with DNA-barcoded MHC multimer staining has enabled high-throughput studies of T cell specificities. However, the immense variability of TCR-pMHC interactions combined with the relatively low signal-to-noise ratio in the data generated using current technologies are complicating these studies. Several approaches have been proposed for denoising single-cell TCR-pMHC specificity data. Here, we present a benchmark evaluating two such denoising methods, ICON and ITRAP. We applied and evaluated the methods on publicly available immune profiling data provided by 10x Genomics. We find that both methods identified approximately 75% of the raw data as noise. We analyzed both internal metrics developed for the purpose and performance on independent data using machine learning methods trained on the raw and denoised 10x data. We find an increased signal-to-noise ratio comparing the denoised to the raw data for both methods, and demonstrate an overall superior performance of the ITRAP method in terms of both data consistency and performance. In conclusion, this study demonstrates that Improving the data quality from high throughput studies of TCRpMHC-specificity by denoising is paramount in increasing our understanding of T cell-mediated immunity.
T 细胞受体 (TCR) 与同源肽-MHC (pMHC) 的配对是 T 细胞介导免疫的基石。最近,单细胞测序与 DNA 编码 MHC 多聚体染色相结合,实现了 T 细胞特异性的高通量研究。然而,TCR-pMHC 相互作用的巨大可变性以及当前技术产生的数据中相对较低的信噪比,使得这些研究变得复杂。已经提出了几种用于降噪单细胞 TCR-pMHC 特异性数据的方法。在这里,我们提出了一个基准来评估两种这样的去噪方法,ICON 和 ITRAP。我们在 10x Genomics 提供的公开免疫分析数据上应用和评估了这些方法。我们发现这两种方法都将大约 75%的原始数据标记为噪声。我们使用基于原始和去噪 10x 数据训练的机器学习方法分析了为该目的开发的内部指标和在独立数据上的性能。我们发现,与原始数据相比,两种方法的信噪比都有所提高,并且在数据一致性和性能方面,ITRAP 方法的总体表现都更为优越。总之,这项研究表明,通过去噪提高 TCR-pMHC 特异性的高通量研究的数据质量对于增加我们对 T 细胞介导免疫的理解至关重要。