Suppr超能文献

具有平衡兴奋性和抑制性活动的神经网络中的混沌现象。

Chaos in neuronal networks with balanced excitatory and inhibitory activity.

作者信息

van Vreeswijk C, Sompolinsky H

机构信息

Racah Institute of Physics and Center for Neural Computation, Hebrew University, Jerusalem, 91904 Israel.

出版信息

Science. 1996 Dec 6;274(5293):1724-6. doi: 10.1126/science.274.5293.1724.

Abstract

Neurons in the cortex of behaving animals show temporally irregular spiking patterns. The origin of this irregularity and its implications for neural processing are unknown. The hypothesis that the temporal variability in the firing of a neuron results from an approximate balance between its excitatory and inhibitory inputs was investigated theoretically. Such a balance emerges naturally in large networks of excitatory and inhibitory neuronal populations that are sparsely connected by relatively strong synapses. The resulting state is characterized by strongly chaotic dynamics, even when the external inputs to the network are constant in time. Such a network exhibits a linear response, despite the highly nonlinear dynamics of single neurons, and reacts to changing external stimuli on time scales much smaller than the integration time constant of a single neuron.

摘要

行为动物皮层中的神经元表现出时间上不规则的放电模式。这种不规则性的起源及其对神经处理的影响尚不清楚。从理论上研究了一种假设,即神经元放电的时间变异性源于其兴奋性和抑制性输入之间的近似平衡。在由相对强突触稀疏连接的兴奋性和抑制性神经元群体的大型网络中,这种平衡自然出现。即使网络的外部输入在时间上是恒定的,由此产生的状态也具有强烈的混沌动力学特征。尽管单个神经元具有高度非线性动力学,但这样的网络表现出线性响应,并且在比单个神经元的积分时间常数小得多的时间尺度上对变化的外部刺激做出反应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验