Pei Zijie, Xu Haojing, Guo Minzheng, Xu Weiyun, Wen Ya, Sun Fengpo, Zhang Tongyi, Peng Bo, Zhao Piqian, Huang Liangkun, Wang Mengyu, He Zhaoshuo, Liu Junzhi, Yang Zhichao, Zhang Ze, Wen Peng, Wen Liangyuan
Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science & Peking Union Medical College, China.
State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
Biomaterials. 2026 Jan;324:123493. doi: 10.1016/j.biomaterials.2025.123493. Epub 2025 Jun 9.
Osteochondral injuries are prevalent and difficult to treat in clinical practice. Traditional tissue engineering typically results in poor integration at the calcified cartilage interlayer, since they cannot address different needs from the cartilage and the supporting subchondral bone. This study presents a hybrid biological scaffold integrating soft and hard components to systematically adopt to osteochondral regeneration. The upper section consists of bioactive hydrogel, kartogenin (KGN), and bone marrow stromal cells (BMSCs), replicating mechanical properties and chondrogenic potential of nature hyaline cartilage. The lower section utilizes a biodegradable metal magnesium (Mg) alloy scaffold with customized porous structure, providing mechanical response comparable to trabecular bone, along with regulated degradation and enhanced angiogenesis and osteogenesis. The bioactive hydrogel is compressed into the pores of Mg scaffold. Notably, the unique combination not only significantly improves mechanical response and fatigue resistance of the cartilage section but also maintains interface stability throughout the repair process. Accordingly, the hybrid scaffold effectively promotes the regeneration of both cartilage and subchondral bone simultaneously by upregulation of osteogenic and chondrogenic specific genes. Overall, this work provides valuable insights for treating osteochondral injuries by material-structure-function integrated strategies.
骨软骨损伤在临床实践中很常见且难以治疗。传统的组织工程通常在钙化软骨中间层的整合效果不佳,因为它们无法满足软骨和支持性软骨下骨的不同需求。本研究提出了一种整合软硬成分的混合生物支架,以系统地适应骨软骨再生。上部由生物活性水凝胶、卡托金(KGN)和骨髓间充质干细胞(BMSC)组成,复制天然透明软骨的力学性能和成软骨潜力。下部采用具有定制多孔结构的可生物降解金属镁(Mg)合金支架,提供与松质骨相当的力学响应,同时具有可控的降解性以及增强的血管生成和成骨能力。生物活性水凝胶被压缩到Mg支架的孔隙中。值得注意的是,这种独特的组合不仅显著改善了软骨部分的力学响应和抗疲劳性,还在整个修复过程中保持了界面稳定性。因此,这种混合支架通过上调成骨和软骨生成特异性基因,有效地同时促进了软骨和软骨下骨的再生。总体而言,这项工作为通过材料 - 结构 - 功能一体化策略治疗骨软骨损伤提供了有价值的见解。