Suppr超能文献

含藻水金属膜处理中的生物污染行为与控制:探究氧化的多种影响

Biofouling behavior and control in metallic membrane treatment of algae-laden water: exploring the diverse impacts of oxidation.

作者信息

Li Weiying, Zhou Yu, Cai Songkai, Zhang Dawei, Ma Liqing, Xie Bing

机构信息

College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 1239 Siping Road, Shanghai 200092, China.

College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

出版信息

J Colloid Interface Sci. 2025 Nov 15;698:138124. doi: 10.1016/j.jcis.2025.138124. Epub 2025 Jun 7.

Abstract

Membrane biofouling remains a critical challenge in ultrafiltration (UF) systems for algae-laden water treatment, particularly in corrosion-resistant metallic membranes where oxidant-algae interactions dictate fouling dynamics. This study systematically evaluates the divergent impacts of potassium permanganate (KMnO) and sodium hypochlorite (NaClO) pre-oxidation on biofouling control, integrating multi-scale characterization (3D fluorescence, SEM, flow cytometry) with mechanistic modeling. While both oxidants achieved high algal removal (>86 %), KMnO demonstrated superior fouling mitigation via dual oxidation-coagulation functionality. At low doses (0.01-0.05 mmol/L), KMnO selectively degraded free organic matter without compromising algal cell integrity, forming a permeable MnO-organic composite layer that reduced irreversible fouling resistance (R, 0.12 for KMnO vs. 0.31 for NaClO). Higher KMnO concentrations (0.05-2 mmol/L) triggered controlled oxidation of intracellular organics, encapsulating debris into a porous MnO-rich cake layer with enhanced reversibility (flux recovery >95 %). In contrast, NaClO induced dose-dependent cell lysis, releasing recalcitrant <3 kDa organics that exacerbated irreversible pore blockage (R up to 0.40 at 2 mg/L). Mechanistic modeling revealed KMnO shifted fouling from pore-blocking (n = 2.2) to cake-dominated regimes (n < 0), while NaClO amplified standard-blocking dynamics. Metallic membranes' inherent oxidative stability further amplified KMnO's efficacy, avoiding organic membrane degradation observed in polymeric counterparts. This work pioneers the linkage between oxidant-driven algal cell fate (lysis vs. encapsulation) and metallic membrane fouling behavior, offering a paradigm for sustainable algae-rich water treatment through MnO-mediated self-protective fouling layers. The findings redefine pre-oxidation strategies, emphasizing dual-function oxidants that harmonize algal inactivation, organic retention, and operational longevity.

摘要

膜生物污染仍然是用于处理含藻水的超滤(UF)系统面临的一项关键挑战,特别是在耐腐蚀金属膜中,氧化剂与藻类的相互作用决定了污染动态。本研究系统地评估了高锰酸钾(KMnO)和次氯酸钠(NaClO)预氧化对生物污染控制的不同影响,将多尺度表征(3D荧光、扫描电子显微镜、流式细胞术)与机理建模相结合。虽然两种氧化剂都实现了较高的藻类去除率(>86%),但KMnO通过双重氧化-混凝功能表现出卓越的污染缓解效果。在低剂量(0.01-0.05 mmol/L)下,KMnO选择性地降解游离有机物而不损害藻类细胞完整性,形成一个可渗透的MnO-有机复合层,降低了不可逆污染阻力(R,KMnO为0.12,而NaClO为0.31)。较高的KMnO浓度(0.05-2 mmol/L)引发细胞内有机物的可控氧化,将碎片包裹在富含MnO的多孔滤饼层中,具有更高的可逆性(通量恢复>95%)。相比之下,NaClO诱导剂量依赖性细胞裂解,释放出难降解的<3 kDa有机物,加剧了不可逆的孔堵塞(在2 mg/L时R高达0.40)。机理建模表明,KMnO将污染从孔堵塞(n = 2.2)转变为滤饼主导模式(n < 0),而NaClO则放大了标准堵塞动态。金属膜固有的氧化稳定性进一步增强了KMnO的功效,避免了在聚合物膜中观察到的有机膜降解。这项工作开创了氧化剂驱动的藻类细胞命运(裂解与包裹)与金属膜污染行为之间的联系,为通过MnO介导的自我保护污染层实现可持续的富藻水处理提供了一个范例。这些发现重新定义了预氧化策略,强调了协调藻类灭活、有机物保留和运行寿命的双功能氧化剂。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验