Li Weiying, Zhou Yu, Cai Songkai, Zhang Dawei, Ma Liqing, Xie Bing
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 1239 Siping Road, Shanghai 200092, China.
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
J Colloid Interface Sci. 2025 Nov 15;698:138124. doi: 10.1016/j.jcis.2025.138124. Epub 2025 Jun 7.
Membrane biofouling remains a critical challenge in ultrafiltration (UF) systems for algae-laden water treatment, particularly in corrosion-resistant metallic membranes where oxidant-algae interactions dictate fouling dynamics. This study systematically evaluates the divergent impacts of potassium permanganate (KMnO) and sodium hypochlorite (NaClO) pre-oxidation on biofouling control, integrating multi-scale characterization (3D fluorescence, SEM, flow cytometry) with mechanistic modeling. While both oxidants achieved high algal removal (>86 %), KMnO demonstrated superior fouling mitigation via dual oxidation-coagulation functionality. At low doses (0.01-0.05 mmol/L), KMnO selectively degraded free organic matter without compromising algal cell integrity, forming a permeable MnO-organic composite layer that reduced irreversible fouling resistance (R, 0.12 for KMnO vs. 0.31 for NaClO). Higher KMnO concentrations (0.05-2 mmol/L) triggered controlled oxidation of intracellular organics, encapsulating debris into a porous MnO-rich cake layer with enhanced reversibility (flux recovery >95 %). In contrast, NaClO induced dose-dependent cell lysis, releasing recalcitrant <3 kDa organics that exacerbated irreversible pore blockage (R up to 0.40 at 2 mg/L). Mechanistic modeling revealed KMnO shifted fouling from pore-blocking (n = 2.2) to cake-dominated regimes (n < 0), while NaClO amplified standard-blocking dynamics. Metallic membranes' inherent oxidative stability further amplified KMnO's efficacy, avoiding organic membrane degradation observed in polymeric counterparts. This work pioneers the linkage between oxidant-driven algal cell fate (lysis vs. encapsulation) and metallic membrane fouling behavior, offering a paradigm for sustainable algae-rich water treatment through MnO-mediated self-protective fouling layers. The findings redefine pre-oxidation strategies, emphasizing dual-function oxidants that harmonize algal inactivation, organic retention, and operational longevity.
膜生物污染仍然是用于处理含藻水的超滤(UF)系统面临的一项关键挑战,特别是在耐腐蚀金属膜中,氧化剂与藻类的相互作用决定了污染动态。本研究系统地评估了高锰酸钾(KMnO)和次氯酸钠(NaClO)预氧化对生物污染控制的不同影响,将多尺度表征(3D荧光、扫描电子显微镜、流式细胞术)与机理建模相结合。虽然两种氧化剂都实现了较高的藻类去除率(>86%),但KMnO通过双重氧化-混凝功能表现出卓越的污染缓解效果。在低剂量(0.01-0.05 mmol/L)下,KMnO选择性地降解游离有机物而不损害藻类细胞完整性,形成一个可渗透的MnO-有机复合层,降低了不可逆污染阻力(R,KMnO为0.12,而NaClO为0.31)。较高的KMnO浓度(0.05-2 mmol/L)引发细胞内有机物的可控氧化,将碎片包裹在富含MnO的多孔滤饼层中,具有更高的可逆性(通量恢复>95%)。相比之下,NaClO诱导剂量依赖性细胞裂解,释放出难降解的<3 kDa有机物,加剧了不可逆的孔堵塞(在2 mg/L时R高达0.40)。机理建模表明,KMnO将污染从孔堵塞(n = 2.2)转变为滤饼主导模式(n < 0),而NaClO则放大了标准堵塞动态。金属膜固有的氧化稳定性进一步增强了KMnO的功效,避免了在聚合物膜中观察到的有机膜降解。这项工作开创了氧化剂驱动的藻类细胞命运(裂解与包裹)与金属膜污染行为之间的联系,为通过MnO介导的自我保护污染层实现可持续的富藻水处理提供了一个范例。这些发现重新定义了预氧化策略,强调了协调藻类灭活、有机物保留和运行寿命的双功能氧化剂。