Suppr超能文献

比较在肯尼亚山生态系统中用于鸟类物种监测的点计数法、被动声学监测、公民科学和机器学习。

Comparing point counts, passive acoustic monitoring, citizen science and machine learning for bird species monitoring in the Mount Kenya ecosystem.

作者信息

Wa Maina Ciira, Njoroge Peter

机构信息

Centre for Data Science and Artificial Intelligence, Dedan Kimathi University of Technology, Nyeri, Kenya.

Ornithology, National Museums of Kenya, Nairobi, Kenya.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2025 Jun 12;380(1928):20240057. doi: 10.1098/rstb.2024.0057.

Abstract

Biodiversity loss is a pressing challenge, with ecosystems across the world under threat from factors such as human encroachment, over exploitation and climate change. It is important to increase ecosystem monitoring efforts to provide actionable insights for ecosystem managers and to allow effective use of conservation resources. In this work, we compare traditional bird survey approaches using point counts with the use of autonomous recording units and citizen scientists' data at two sites within the Mount Kenya ecosystem. We also present a new dataset of more than 20 h of recordings obtained from the Mount Kenya ecosystem and annotated by expert ornithologists, and investigate the use of large deep learning models to process these recordings. Our results are mixed, and at one site, autonomous recording units and traditional point counts yield similar conclusions when comparing relative abundance of species, while at the second site, conclusions differ. Our results indicate that citizen science is preferable to point counts and autonomous recording units in determining species lists for particular habitats. However, even with the use of multiple methods, our survey still misses rare species known to occur in the Mount Kenya ecosystem, indicating that even the use of multiple methods is not exhaustive.This article is part of the theme issue 'Acoustic monitoring for tropical ecology and conservation'.

摘要

生物多样性丧失是一项紧迫的挑战,全球生态系统受到人类侵占、过度开发和气候变化等因素的威胁。加强生态系统监测工作,为生态系统管理者提供可采取行动的见解,并有效利用保护资源,这一点很重要。在这项研究中,我们在肯尼亚山生态系统内的两个地点,比较了使用定点计数的传统鸟类调查方法与使用自动录音设备和公民科学家数据的方法。我们还展示了一个新的数据集,该数据集包含从肯尼亚山生态系统获取的20多个小时的录音,并由鸟类学专家进行了注释,同时研究了使用大型深度学习模型来处理这些录音。我们的结果好坏参半,在一个地点,比较物种相对丰度时,自动录音设备和传统定点计数得出了相似的结论,而在第二个地点,结论则有所不同。我们的结果表明,在确定特定栖息地的物种清单方面,公民科学比定点计数和自动录音设备更具优势。然而,即使使用了多种方法,我们的调查仍然遗漏了已知在肯尼亚山生态系统中出现的稀有物种,这表明即使使用多种方法也并不全面。本文是主题为“热带生态学与保护的声学监测”的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验