Li Wenlong, Ding Yunxuan, Zhao Yilong, Li Zhiheng, Lin Gaoxin, Wang Linqin, Sun Licheng
Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310024, China.
Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China.
Angew Chem Int Ed Engl. 2025 Aug 11;64(33):e202505924. doi: 10.1002/anie.202505924. Epub 2025 Jun 16.
The development of efficient nonprecious metal electrocatalysts for industrial anion exchange membrane water electrolysis (AEM-WE) remains challenging, primarily due to sluggish OH transfer from the anion exchange membrane (AEM) to catalytic sites, causing H accumulation and performance degradation. Herein, we developed a zwitterion-modified NiFe catalyst (z-NiFe) through gradient soaking, facilitates rapid OH transfer across the AEM-electrocatalyst interface, effectively neutralizing the generated H and enhancing catalytic performance. In-situ Raman spectroscopy and OH conductivity measurements reveal an alkaline-enriched surface environment, which inhibits H accumulation-induced chemical corrosion and enhances water oxidation performances. Density functional theory (DFT) analysis demonstrates that zwitterions stabilize adsorbed oxygen during catalysis, and reduce the overpotential of oxygen evolution reaction (OER). The z-NiFe shows an ultralow Tafel slope (28.5 mV dec) and high activity (190 mV overpotential at 1000 mA cm) in 1 M KOH. When integrated into an AEM-WE system, the z-NiFe-catalyzed AEM-WE device exhibits a low cell voltage of 1.76 V at 1000 mA cm and record-breaking durability over 14000 h, with a voltage degradation rate of 12.3 µV h, representing a significant advancement in AEM-WE technology.
开发用于工业阴离子交换膜水电解(AEM-WE)的高效非贵金属电催化剂仍然具有挑战性,主要原因是氢氧根(OH)从阴离子交换膜(AEM)向催化位点的转移缓慢,导致氢(H)积累和性能下降。在此,我们通过梯度浸泡开发了一种两性离子修饰的镍铁催化剂(z-NiFe),促进了OH在AEM-电催化剂界面的快速转移,有效中和了生成的H并提高了催化性能。原位拉曼光谱和OH电导率测量揭示了一个富碱性的表面环境,这抑制了H积累引起的化学腐蚀并提高了水氧化性能。密度泛函理论(DFT)分析表明,两性离子在催化过程中稳定吸附的氧,并降低析氧反应(OER)的过电位。z-NiFe在1 M KOH中显示出超低的塔菲尔斜率(28.5 mV dec)和高活性(在1000 mA cm时过电位为190 mV)。当集成到AEM-WE系统中时,z-NiFe催化的AEM-WE装置在1000 mA cm时表现出1.76 V的低电池电压和超过14000 h的破纪录耐久性,电压降解率为12.3 µV h,代表了AEM-WE技术的重大进步。