Singh Srujan, Patel Shishir Kumar, Matsuura Ryo, Velazquez Dee, Sun Zhaoli, Noel Sanjeev, Rabb Hamid, Fan Jean
Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.
bioRxiv. 2025 May 28:2025.05.25.654911. doi: 10.1101/2025.05.25.654911.
Kidney transplantation is the gold standard treatment strategy for end-stage renal disease. Deceased donor kidneys usually undergo cold storage until kidney transplantation, leading to cold ischemia injury that may contribute to poor graft outcomes. However, the molecular characterization of potential mechanisms of cold ischemia injury remains incomplete. To bridge this knowledge gap, we leveraged spatial transcriptomics technology to perform full transcriptome characterization of cold ischemia injury (0-48 hours) using a murine model. We developed a computational workflow to identify spatiotemporal transcriptomic changes that accompany the injury pathophysiology in a compartment-specific manner. We identified potential metabolic reprogramming preferentially within the kidney inner medulla displaying strong oxidative phosphorylation signature in an ischemic environment. We found commonalities between the spatiotemporal transcriptomic presentation of cold ischemia and warm ischemia‒reperfusion injury, including an induction of an anti-viral like immune response throughout the renal tissue. Altogether, these systems-level biological insights enabled by our full transcriptome temporal characterization unveil a molecular basis for how cold ischemia injury may negatively affect kidney outcomes. Moreover, our spatial analyses highlight pathological developments deep within the renal tissue, suggesting potential opportunities for new insights beyond biopsy-focused superficial tissue examinations. We also developed an interactive online browser at https://jef.works/vitessce-cold-ischemia/ to facilitate exploration of our results by the broader scientific and clinical community.
肾移植是终末期肾病的金标准治疗策略。已故供体的肾脏通常在肾移植前进行冷藏,这会导致冷缺血损伤,可能影响移植肾的预后。然而,冷缺血损伤潜在机制的分子特征仍不完整。为填补这一知识空白,我们利用空间转录组学技术,使用小鼠模型对冷缺血损伤(0 - 48小时)进行全转录组特征分析。我们开发了一种计算流程,以特定区域的方式识别伴随损伤病理生理学的时空转录组变化。我们发现,在肾脏内髓质中优先发生了潜在的代谢重编程,在缺血环境中显示出强烈的氧化磷酸化特征。我们发现冷缺血与热缺血 - 再灌注损伤的时空转录组表现有共同之处,包括在整个肾组织中诱导类似抗病毒的免疫反应。总之,我们的全转录组时间特征分析所获得的这些系统层面的生物学见解揭示了冷缺血损伤可能对肾脏预后产生负面影响的分子基础。此外,我们的空间分析突出了肾组织深处的病理发展,表明除了聚焦活检的浅表组织检查之外,还有可能获得新见解的潜在机会。我们还在https://jef.works/vitessce-cold-ischemia/ 开发了一个交互式在线浏览器,以方便广大科研和临床社区探索我们的研究结果。