Yuwen Mingyue, Gao Xiaoning, Ba Junli, Wu Jiayang, Kang Jun, Ye Sheng, Zhu Cheng
State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
iScience. 2025 May 8;28(6):112621. doi: 10.1016/j.isci.2025.112621. eCollection 2025 Jun 20.
Oxidative stress disrupts signaling pathways contributing to chronic diseases, while the KEAP1-NRF2 pathway is central to cellular antioxidant defenses. Current synthetic antioxidants struggle to activate this pathway efficiently or selectively. In this study, we employed deep learning algorithms to design miniproteins capable of activating NRF2. Five designed binders potently interfered with the KEAP1-NRF2 complex, exhibiting affinities ranging from 4.4 nM to 53.3 nM toward KEAP1. Two of these binders, designed through the motif scaffolding method, activated NRF2 in eukaryotic cells increasing antioxidant gene expression 3.8-fold and boosting cell survival across oxidative stress levels. Our approach illustrates the potential of integrated deep learning models to develop stable miniproteins that exhibit a variety of structural frameworks and thermodynamic characteristics. These designs hold promise for countering the cumulative effects of oxidative damage and for supporting the establishment of adaptive homeostasis within key antioxidative systems.
氧化应激会破坏导致慢性疾病的信号通路,而KEAP1-NRF2通路是细胞抗氧化防御的核心。目前的合成抗氧化剂难以有效或选择性地激活该通路。在本研究中,我们采用深度学习算法设计能够激活NRF2的微型蛋白质。五种设计的结合物有力地干扰了KEAP1-NRF2复合物,对KEAP1的亲和力范围为4.4 nM至53.3 nM。其中两种通过基序支架法设计的结合物在真核细胞中激活了NRF2,使抗氧化基因表达增加了3.8倍,并在不同氧化应激水平下提高了细胞存活率。我们的方法说明了集成深度学习模型在开发具有各种结构框架和热力学特征的稳定微型蛋白质方面的潜力。这些设计有望对抗氧化损伤的累积效应,并支持在关键抗氧化系统内建立适应性内稳态。