Hao Chunchun, Zou Qijie, Bai Xuerong, Shi Weiwei
Ministry of Education Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China.
Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
iScience. 2025 May 8;28(6):112605. doi: 10.1016/j.isci.2025.112605. eCollection 2025 Jun 20.
Chemical protein synthesis has become an important tool in biotechnology and synthetic biology for producing proteins with complex structures. However, achieving correct folding remains a significant challenge. Glycosylation, a ubiquitous modification, stabilizes folding intermediates, prevents aggregation, and accelerates folding in both cellular and cell-free systems. In this review, we discuss the dual role of glycosylation in biological systems and experiments, focusing on how it promotes protein folding and stability. We also discuss the temporary glycosylation scaffold strategy for chemical protein synthesis, which offers a reversible approach to guide protein folding without leaving permanent modifications. This strategy provides a promising solution to the challenges of folding and holds significant potential to produce therapeutic proteins and the development of synthetic proteins with precise structural requirements.
化学蛋白质合成已成为生物技术和合成生物学中用于生产具有复杂结构蛋白质的重要工具。然而,实现正确折叠仍然是一项重大挑战。糖基化是一种普遍存在的修饰,它能稳定折叠中间体、防止聚集,并在细胞和无细胞系统中加速折叠。在本综述中,我们讨论了糖基化在生物系统和实验中的双重作用,重点关注其如何促进蛋白质折叠和稳定性。我们还讨论了用于化学蛋白质合成的临时糖基化支架策略,该策略提供了一种可逆方法来指导蛋白质折叠而不留下永久性修饰。这一策略为折叠挑战提供了一个有前景的解决方案,并在生产治疗性蛋白质以及开发具有精确结构要求的合成蛋白质方面具有巨大潜力。