García-Zaragoza Adrián, Del Río-Rodríguez José Luis, Cerezo-Navarrete Christian, Gutiérrez-Tarriño Silvia, Molina M Asunción, Costley-Wood Lucy, Mazarío Jaime, Chaudret Bruno, Martínez-Prieto Luis M, Beale Andrew M, Oña-Burgos Pascual
ITQ, Instituto de Tecnología Química, Universitat Politècnica de València (UPV), Av. de los Naranjos S/N, Valencia 46022, Spain.
Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
ACS Catal. 2025 May 20;15(11):9489-9502. doi: 10.1021/acscatal.5c01232. eCollection 2025 Jun 6.
Reducing CO to CO via the reverse water-gas shift (RWGS) reaction is a promising strategy for carbon capture and utilization (CCU). In this study, tailored magnetic catalysts were designed through the pyrolysis of a Co-based MOF to form well-defined nanoparticles. As a result, carbon-encapsulated cobalt nanoparticles () and palladium-doped cobalt nanoparticles () were synthesized and thoroughly characterized using a variety of techniques, including X-ray absorption and diffraction experiments. These carbon-based catalysts were simultaneously used as heating agents and catalysts for the magnetically induced RWGS reaction, exhibiting remarkable activity and selectivity for syngas production. CO conversions of 61.1% and 71.1% were obtained for and (63 mT, 2 kW, 320 kHz), respectively. Using magnetic induction heating (MIH), these catalysts operate at lower local temperatures and with greater energy efficiency than conventional thermal heating, while achieving superior CO production efficiency. Notably, achieved highly satisfactory CO production efficiency (478.5 mL/kW·h), demonstrating a significant improvement compared to the analogous process utilizing magnetically induced heating. Furthermore, exhibited unwavering stability, maintaining its performance for more than 200 h without significant degradation or need for reactivation. This study highlights the potential of MIH for industrial applications in CO reduction, offering a more renewable and economically viable alternative to traditional methods.
通过逆水煤气变换(RWGS)反应将二氧化碳还原为一氧化碳是一种很有前景的碳捕获与利用(CCU)策略。在本研究中,通过钴基金属有机框架(MOF)的热解设计了定制的磁性催化剂,以形成结构明确的纳米颗粒。结果,合成了碳包覆钴纳米颗粒()和钯掺杂钴纳米颗粒(),并使用包括X射线吸收和衍射实验在内的多种技术对其进行了全面表征。这些碳基催化剂同时用作磁诱导RWGS反应的加热剂和催化剂,对合成气生产表现出显著的活性和选择性。对于(63 mT,2 kW,320 kHz)的和,CO转化率分别为61.1%和71.1%。使用磁感应加热(MIH),这些催化剂在比传统热加热更低的局部温度下运行,且能源效率更高,同时实现了卓越的CO生产效率。值得注意的是,实现了非常令人满意的CO生产效率(478.5 mL/kW·h),与利用磁感应加热的类似过程相比有显著提高。此外,表现出稳定的稳定性,在超过200小时内保持其性能,没有明显降解或需要重新活化。本研究突出了MIH在CO还原工业应用中的潜力,为传统方法提供了一种更可再生且经济可行的替代方案。