Abbasi Aqsa Zafar, Raja Muhammad Asif Zahoor, Nisar Kottakkaran Sooppy, Shoaib Muhammad
Department of Foreign Languages and Applied Linguistics, Yuan Ze University, 135 Yuan-Tung Road, Chung Li 32003, Taiwan.
Department of Applied Mathematics and Statistics, Institute of Space Technology, Islamabad, Pakistan.
MethodsX. 2025 May 20;14:103375. doi: 10.1016/j.mex.2025.103375. eCollection 2025 Jun.
In this paper, a new Caputo discrete fractional model is introduced to capture the dynamics of English language learning. This model creates a strong foundation for examining language acquisition behaviors by including the learning process within the system. The proposed work not only presents an innovative discrete fractional model but also leverages machine learning techniques to estimate and analyze the learning process over time. To achieve numerical accuracy and stability, we employ Bayesian Regularization Artificial Neural Networks (BRA-NNs) as a machine learning-based computational solver. This approach ensures robust numerical simulations and enhances the predictive power of the model. Furthermore, the reliability of the proposed method is demonstrated through six fractional-order variants of the Fractional-Order English Language Mathematical Model (FOELMM), which are systematically derived and analyzed. The results are validated against the Fractional-Order Lotka-Volterra method, confirming the accuracy and robustness of the proposed machine learning-driven computational approach.•Development of a discrete Caputo fractional model for language learning.•Integration of machine learning techniques via Bayesian Regularization Artificial Neural Networks (BRA-NNs) for numerical simulations.•Validation of the model through the Fractional-Order Lotka-Volterra approach to ensure accuracy.
在本文中,引入了一种新的卡普托离散分数阶模型来捕捉英语学习的动态过程。该模型通过将学习过程纳入系统,为研究语言习得行为奠定了坚实基础。所提出的工作不仅展示了一种创新的离散分数阶模型,还利用机器学习技术来估计和分析随时间的学习过程。为了实现数值精度和稳定性,我们采用贝叶斯正则化人工神经网络(BRA-NNs)作为基于机器学习的计算求解器。这种方法确保了稳健的数值模拟,并增强了模型的预测能力。此外,通过分数阶英语语言数学模型(FOELMM)的六个分数阶变体证明了所提方法的可靠性,这些变体经过系统推导和分析。结果与分数阶洛特卡 - 沃尔泰拉方法进行了验证,证实了所提机器学习驱动计算方法的准确性和稳健性。
开发用于语言学习的离散卡普托分数阶模型。
通过贝叶斯正则化人工神经网络(BRA-NNs)集成机器学习技术进行数值模拟。
通过分数阶洛特卡 - 沃尔泰拉方法验证模型以确保准确性。