Anouma Ariel, Niquet-Léridon Céline, Lorrette Bénédicte, Aussenac Thierry
Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, Beauvais, 60026, France.
YNSECT, 1 rue Pierre Fontaine, Evry, 91000, France.
Curr Res Food Sci. 2025 May 17;10:101077. doi: 10.1016/j.crfs.2025.101077. eCollection 2025.
Understanding the structural modifications of insect proteins during the transformation processes used for extract preparation is essential for optimising their functionalities and obtaining high added-value proteins. From this perspective and in addition to classical analytical approaches, we developed an original methodology based on the implementation of Asymmetrical Flow Field-Flow Fractionation and Multi-Angle Laser Light Scattering (A4F-MALLS) coupling to quantify and characterise the aggregation/polymerisation phenomena of larvae proteins after heat treatment (from 65 to 95 °C). Applied to heat-treated larvae proteins in conjunction with the evaluation of intrinsic fluorescence, surface hydrophobicity and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), the AF4-MALLS method enabled us to quantify and characterise the aggregated proteins (forms dissociable after urea denaturation), determining the polymer/monomer (P/M) ratio. Heat treatment significantly affects solubility (-35 %), which is due to the amplification of aggregation phenomena, as demonstrated by the increase in the P/M ratio ( × 10). Moreover, the method enabled us to quantify and characterise the polymerised protein (forms dissociable after chemical reduction of intermolecular bonds), identifying the elements by molar mass and size distribution and conformation. Proteins with cysteine groups can be polymerised under heat, causing a thiol-disulphide exchange reaction and forming a strong (M > 10 g/mol, R >130 nm) and compact polymer structure ( ≤ 0.35) and resulting in intermolecular S-S bonds that preferentially mobilise proteins with M > 80 kDa. Given its performances, the AF4-MALLS method is a real opportunity to understand the effects of processing methods, such as thermal and non-thermal treatments, to optimise protein functionalities.
了解昆虫蛋白质在提取物制备过程中的结构修饰对于优化其功能和获得高附加值蛋白质至关重要。从这个角度来看,除了传统的分析方法外,我们还开发了一种基于不对称流场-流分级分离和多角度激光光散射(A4F-MALLS)联用的原创方法,以量化和表征热处理(65至95°C)后幼虫蛋白质的聚集/聚合现象。将AF4-MALLS方法应用于热处理后的幼虫蛋白质,并结合对内在荧光、表面疏水性和十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)的评估,使我们能够量化和表征聚集蛋白(尿素变性后可解离的形式),确定聚合物/单体(P/M)比率。热处理显著影响溶解度(-35%),这是由于聚集现象的放大,P/M比率的增加(×10)证明了这一点。此外,该方法使我们能够量化和表征聚合蛋白(分子间键化学还原后可解离的形式),通过摩尔质量、尺寸分布和构象识别其成分。含半胱氨酸基团的蛋白质在加热下可聚合,引发硫醇-二硫键交换反应,形成强(M>10 g/mol,R>130 nm)且紧密的聚合物结构(≤0.35),并导致分子间S-S键,优先动员M>80 kDa的蛋白质。鉴于其性能,AF4-MALLS方法是了解加工方法(如热处理和非热处理)对优化蛋白质功能影响的一个切实机会。