Suppr超能文献

对甲醇蒸汽重整具有大幅增强的催化活性和稳定性的嵌入式铜纳米颗粒。

Embedded-Type Cu Nanoparticle with Largely Enhanced Catalytic Activity and Stability Toward Methanol Steam Reforming.

作者信息

Meng Hao, Shen Tianyao, Yin Zhiming, Yang Yusen, Zhang Jian, Feng Kai, Yuan Shaoteng, Wang Lei, Xu Enze, Zheng Lirong, Hong Song, Xiao Feng-Shou, Wei Min

机构信息

State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China.

Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, P.R. China.

出版信息

Angew Chem Int Ed Engl. 2025 Aug 11;64(33):e202506458. doi: 10.1002/anie.202506458. Epub 2025 Jun 25.

Abstract

Hydrogen production through low-temperature methanol steam reforming (MSR) reaction plays a critical role in the development of new energy but remains a great challenge. Herein, we report a Cu/Zn(Ga)O catalyst, which is prepared via an interface reconstruction strategy. Interestingly, this catalyst is featured with a unique mortise-and-tenon structure: Cu nanoparticles are embedded into the Zn(Ga)O substrate, which ensures a stable Zn-O-Cu-O-Ga interface structure. The resulting Cu/Zn(Ga)O catalyst exhibits 99.3% CHOH conversion with an H production rate of 124.6 µmol g  s at 225 °C, which is preponderant to the state-of-the-art catalysts. Furthermore, an ultra-high catalytic stability was demonstrated through a 400 h stream-on-line test without obvious decline. Kinetic isotope analysis, in situ spectroscopy characterizations, and theoretical calculations reveal that the MSR reaction over Cu/Zn(Ga)O catalyst follows the formaldehyde oxidation route. The CHO* and HO molecule adsorb at the adjacent Cu-O interface (intrinsic active site) with an oxygen-terminal adsorption configuration, which promotes electron transfer from the d-band center of Cu to the O (s,p)-band of the substrate molecule. This significantly reduces the energy barrier of C─H bond cleavage in CHO* dehydrogenation (the rate-determining step) and HO dissociation, accounting for the extraordinarily enhanced H production.

摘要

通过低温甲醇蒸汽重整(MSR)反应制氢在新能源发展中起着关键作用,但仍然是一个巨大的挑战。在此,我们报道了一种通过界面重构策略制备的Cu/Zn(Ga)O催化剂。有趣的是,这种催化剂具有独特的榫卯结构:铜纳米颗粒嵌入到Zn(Ga)O基底中,这确保了稳定的Zn-O-Cu-O-Ga界面结构。所得的Cu/Zn(Ga)O催化剂在225℃下表现出99.3%的甲醇转化率,产氢速率为124.6 μmol g⁻¹ s⁻¹,优于目前的先进催化剂。此外,通过400小时的在线流测试证明了其超高的催化稳定性,且没有明显下降。动力学同位素分析、原位光谱表征和理论计算表明,Cu/Zn(Ga)O催化剂上的MSR反应遵循甲醛氧化途径。CHO和HO分子以氧端吸附构型吸附在相邻的Cu-O界面(本征活性位点)上,这促进了电子从铜的d带中心转移到底物分子的O(s,p)带。这显著降低了CHO脱氢(速率决定步骤)和HO解离中C─H键断裂的能垒,这解释了产氢量的显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验