Suppr超能文献

Enhanced tolerance of salt-adapted to antibiotic-induced oxidative stress.

作者信息

Avendano Vargas Andrea, Papenbrock Jutta, Turcios Ariel E

机构信息

Institute of Botany, Leibniz University Hannover, Hannover, Germany.

出版信息

Int J Phytoremediation. 2025;27(11):1632-1644. doi: 10.1080/15226514.2025.2513669. Epub 2025 Jun 12.

Abstract

Intensive aquaculture heavily relies on antibiotics to prevent and treat fish diseases, raising concerns about antibiotic resistance, environmental contamination, and human health impacts. This study evaluated the growth, physiological responses, elemental content, oxytetracycline (OTC), and nitrogen removal performance of Common Reed () in fresh and mesohaline antibiotic-spiked solutions over 36 days. Eight treatments (0, 0.01, 0.1, 1 mg/L OTC) in freshwater and mesohaline conditions were tested, with controls included. Positive combined effects were observed in leaf temperature, photosynthetic performance, and root P content, while negative effects were found in root Fe content. OTC did not affect N content, C content, C/N ratios, plant height, or chlorophyll content. In non-saline conditions, nitrate removal reached 81-92%, regardless of OTC concentration, but was reduced by 43% due to salinity. Phytoremediation was responsible for 5-70% nitrate, 99% ammonium, and up to 14.6% OTC removal. These findings suggest is well-suited for bioremediation of nitrate and ammonium in non-saline constructed wetlands, despite OTC presence. However, its nitrate removal capacity is hindered by salinity, making it more effective in non-saline environments. These results highlight the potential of as an efficient biological method to decrease contaminants in non-saline environments.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验