Suppr超能文献

非晶态高熵电催化剂的自动发现与优化生成

Automatic Discovery and Optimal Generation of Amorphous High-Entropy Electrocatalysts.

作者信息

Lei Zhanwu, Huang Yan, Zhu Yuanmin, Zhou Donglai, Chen Yu, Wang Song, Li Wanxia, Li Huirong, Xi Xiaoke, Liu Yang, Zhang Yuchen, Zhang Guozhen, Li Xiyu, Zhu Qing, Zhang Baicheng, Feng Shuo, Ye Sheng, Yan Wensheng, Zhang Shuo, Jiao Shuhong, Jiang Jun, Gu Meng, Cao Ruiguo, Luo Yi

机构信息

State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.

Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

出版信息

J Am Chem Soc. 2025 Jun 25;147(25):21743-21753. doi: 10.1021/jacs.5c04117. Epub 2025 Jun 12.

Abstract

Amorphous materials are ubiquitous in nature and are widely used for many industrial applications, including catalysis, energy storage, and environmental science. However, significant challenges remain in designing and optimizing amorphous high-entropy materials because of the lack of well-defined structure-activity relationships. Here, we use synthesis systems to discover and optimize amorphous high-entropy oxyhydroxide electrocatalysts within the entire design space for the alkaline oxygen evolution reaction. Amorphous high-entropy electrocatalysts are derived from ultrathin 2D coordination polymers composed of six nonprecious metal elements that were selected from top 16 candidate metal elements involved in oxygen evolution reaction (OER)-related literature searching, which can then be transformed into amorphous oxyhydroxides. Leveraging machine learning (ML) techniques, we establish a composition-activity relationship and thereby identify an optimal composition group by traversing the entire design space (over 1,900,000 compositions). Our ML-model is validated by using 100 compositions in the high-activity region and 588 compositions in the low-activity region, which results in excellent recall values of nearly 100%. The predicted optimal amorphous high-entropy electrocatalyst demonstrates an ultralow overpotential of 159 mV at a current density of 10 mA cm for the alkaline OER in a 1 M KOH while exhibiting ultralong durability 10,218 h under a practical current density of 1 A cm in a 6 M KOH. Our work provides a general strategy for the automatic discovery and optimization of amorphous high-entropy oxyhydroxide electrocatalysts and could significantly impact the development of other amorphous high-entropy materials.

摘要

非晶态材料在自然界中无处不在,并广泛应用于许多工业领域,包括催化、储能和环境科学。然而,由于缺乏明确的结构-活性关系,在设计和优化非晶态高熵材料方面仍存在重大挑战。在此,我们利用合成系统在碱性析氧反应的整个设计空间内发现并优化非晶态高熵羟基氧化物电催化剂。非晶态高熵电催化剂源自由六种非贵金属元素组成的超薄二维配位聚合物,这些元素是从与析氧反应(OER)相关的文献搜索中涉及的前16种候选金属元素中选出的,然后可以转化为非晶态羟基氧化物。利用机器学习(ML)技术,我们建立了组成-活性关系,从而通过遍历整个设计空间(超过190万个组成)确定了一个最佳组成组。我们的ML模型通过使用高活性区域的100个组成和低活性区域的588个组成进行了验证,召回率接近100%,效果极佳。预测的最佳非晶态高熵电催化剂在1 M KOH中碱性OER的电流密度为10 mA cm时,过电位超低,仅为159 mV,同时在6 M KOH中实际电流密度为1 A cm的情况下,表现出长达10218 h的超长耐久性。我们的工作为非晶态高熵羟基氧化物电催化剂的自动发现和优化提供了一种通用策略,并可能对其他非晶态高熵材料的发展产生重大影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验