Suppr超能文献

新型冠状病毒肺炎的疫情监测:考虑不确定性和漏报情况

Epidemic Surveillance of Covid-19: Considering Uncertainty and Under-Ascertainment.

作者信息

Ricoca Peixoto Vasco, Nunes Carla, Abrantes Alexandre

机构信息

Public Health Research Centre, NOVA National School of Public Health, Universidade NOVA de Lisboa, Lisbon, Portugal.

Public Health Unit, North Lisbon Health Centers, Lisbon, Portugal.

出版信息

Port J Public Health. 2020 Apr 9:1-7. doi: 10.1159/000507587.

Abstract

Epidemic surveillance is a fundamental part of public health practice. Addressing under-ascertainment of cases is relevant in most surveillance systems, especially in pandemics of new diseases with a large spectrum of clinical presentations as it may influence timings of policy implementation and public risk perception. From this perspective, this article presents and discusses early evidence on under-ascertainment of COVID-19 and its motifs, options for surveillance, and reflections around their importance to tailor public health measures. In the case of COVID-19, systematically addressing and estimating under-ascertainment of cases is essential to tailor timely public health measures, and communicating these findings is of the utmost importance for policy making and public perception.

摘要

疫情监测是公共卫生实践的基本组成部分。在大多数监测系统中,解决病例报告不足的问题都很重要,尤其是在具有广泛临床表现的新型疾病大流行期间,因为这可能会影响政策实施的时机和公众的风险认知。从这个角度来看,本文展示并讨论了关于新冠病毒病病例报告不足及其模式、监测选项的早期证据,以及围绕它们对制定公共卫生措施的重要性的思考。就新冠病毒病而言,系统地解决和评估病例报告不足的问题对于及时制定公共卫生措施至关重要,而传达这些发现对于政策制定和公众认知极为重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce09/7206356/272995bdb570/pjp-0001-g01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验