Li Gang, Zhai Weibin, Liu Chang, Chen Mengying, Xu Qingqiang, Huang Yuanlan
Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai 200050, PR China.
Special Food Equipment Research Laboratory, Naval Specialty Medical Center, Naval Medical University, Shanghai 200050, PR China.
Ecotoxicol Environ Saf. 2025 Aug;301:118494. doi: 10.1016/j.ecoenv.2025.118494. Epub 2025 Jun 11.
The widespread distribution of environmental contaminants poses a significant threat to public health. N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its ozone-derivative, 6PPD-quinone (6PPD-Q), are emerging pollutants that propagate through particulate matter and aerosols, exerting detrimental effects on the respiratory system. However, their specific pathogenic mechanisms remain unclear. This study employs integrated network toxicology and molecular docking to elucidate the molecular basis of 6PPD/6PPD-Q-induced respiratory toxicity. Respiratory hazard potential was predicted using ADMETlab 3.0 and ProTox-II. Potential targets were identified through multi-database mining (BindingDB, ChEMBL, SwissTargetPrediction, TargetNet), with disease-associated targets categorized into acute and chronic respiratory damage using GeneCards and OMIM. Intersectional analysis via Venn diagrams, STRING, and Cytoscape revealed compound-specific targets (EGFR for 6PPD; FYN for 6PPD-Q) and five shared targets (NR3C1, MAPK14, RELA, CYCS, JAK2). Enrichment analysis using DAVID indicated significant associations with mitochondrial energy metabolism, oxidative stress, apoptosis and neuroactive ligand-receptor interactions (p < 0.05). Molecular docking and molecular dynamics simulations confirmed that both compounds showed high affinity binding to key toxicity targets (binding energy <-20.92 kJ/mol), and revealed the interaction mode of these two compounds with the key target CYCS. Mechanistically, 6PPD and 6PPD-Q disrupt the mitochondrial electron transport chain, dysregulate apoptotic pathways, and activate NF-κB/JAK-STAT inflammatory cascades, leading to respiratory inflammation. This study establishes a comparative toxicological framework for 6PPD and 6PPD-Q, identifying actionable molecular targets and mechanistic pathways for respiratory toxicity, and highlights the utility of computational toxicology strategies in environmental health risk assessment.
环境污染物的广泛分布对公众健康构成了重大威胁。N-(1,3-二甲基丁基)-N'-苯基对苯二胺(6PPD)及其臭氧衍生物6PPD-醌(6PPD-Q)是新兴污染物,可通过颗粒物和气溶胶传播,对呼吸系统产生有害影响。然而,它们具体的致病机制仍不清楚。本研究采用综合网络毒理学和分子对接方法,阐明6PPD/6PPD-Q诱导的呼吸道毒性的分子基础。使用ADMETlab 3.0和ProTox-II预测呼吸道危害潜力。通过多数据库挖掘(BindingDB、ChEMBL、SwissTargetPrediction、TargetNet)确定潜在靶点,并使用GeneCards和OMIM将与疾病相关的靶点分类为急性和慢性呼吸道损伤。通过维恩图、STRING和Cytoscape进行的交叉分析揭示了化合物特异性靶点(6PPD的EGFR;6PPD-Q的FYN)和五个共同靶点(NR3C1、MAPK14、RELA、CYCS、JAK2)。使用DAVID进行的富集分析表明,这些靶点与线粒体能量代谢、氧化应激、细胞凋亡和神经活性配体-受体相互作用显著相关(p<0.05)。分子对接和分子动力学模拟证实,这两种化合物均与关键毒性靶点表现出高亲和力结合(结合能<-20.92kJ/mol),并揭示了这两种化合物与关键靶点CYCS的相互作用模式。从机制上讲,6PPD和6PPD-Q破坏线粒体电子传递链,失调凋亡途径,并激活NF-κB/JAK-STAT炎症级联反应,导致呼吸道炎症。本研究为6PPD和6PPD-Q建立了一个比较毒理学框架,确定了呼吸道毒性的可操作分子靶点和作用机制途径,并强调了计算毒理学策略在环境健康风险评估中的实用性。