Suppr超能文献

利用改进的U-net模型实现脑肿瘤的生物医学分割。

Implementation of biomedical segmentation for brain tumor utilizing an adapted U-net model.

作者信息

Alkhalid Farah F, Salih Nibras Z

机构信息

University of Technology- Iraq, Control and Systems Engineering Department, Baghdad, Iraq.

University of Technology- Iraq, Control and Systems Engineering Department, Baghdad, Iraq.

出版信息

Comput Biol Med. 2025 Aug;194:110531. doi: 10.1016/j.compbiomed.2025.110531. Epub 2025 Jun 11.

Abstract

Using radio signals from a magnetic field, magnetic resonance imaging (MRI) represents a medical procedure that produces images to provide more information than typical scans. Diagnosing brain tumors from MRI is difficult because of the wide range of tumor shapes, areas, and visual features, thus universal and automated system to handle this task is required. Among the best deep learning methods, the U-Net architecture is the most widely used in diagnostic medical images. Therefore, U-Net-based attention is the most effective automated model in medical image segmentation dealing with various modalities. The self-attention structures that are used in the U-Net design allow for fast global preparation and better feature visualization. This research aims to study the progress of U-Net design and show how it improves the performance of brain tumor segmentation. We have investigated three U-Net designs (standard U-Net, Attention U-Net, and self-attention U-Net) for five epochs to find the last segmentation. An MRI image dataset that includes 3064 images from the Kaggle website is used to give a more comprehensive overview. Also, we offer a comparison with several studies that are based on U-Net structures to illustrate the evolution of this network from an accuracy standpoint. U-Net-based self-attention has demonstrated superior performance compared to other studies because self-attention can enhance segmentation quality, particularly for unclear structures, by concentrating on the most significant parts. Four main metrics are applied with a loss function of 5.03 %, a validation loss function of 4.82 %, a validation accuracy of 98.49 %, and an accuracy of 98.45 %.

摘要

利用磁场中的无线电信号,磁共振成像(MRI)是一种医疗程序,它所生成的图像能提供比典型扫描更多的信息。由于脑肿瘤的形状、区域和视觉特征范围广泛,通过MRI诊断脑肿瘤很困难,因此需要通用且自动化的系统来处理这项任务。在最佳的深度学习方法中,U-Net架构在诊断医学图像中使用最为广泛。因此,基于U-Net的注意力机制是医学图像分割中处理各种模态最有效的自动化模型。U-Net设计中使用的自注意力结构能够实现快速的全局准备并能更好地进行特征可视化。本研究旨在探讨U-Net设计的进展,并展示其如何提高脑肿瘤分割的性能。我们研究了三种U-Net设计(标准U-Net、注意力U-Net和自注意力U-Net),训练五个轮次以找到最终的分割结果。使用一个包含来自Kaggle网站的3064张图像的MRI图像数据集,以给出更全面的概述。此外,我们还与一些基于U-Net结构的研究进行了比较,从准确性的角度说明该网络的演变。基于U-Net的自注意力机制相比其他研究已展现出卓越的性能,因为自注意力机制可以通过聚焦最重要的部分来提高分割质量,特别是对于不清晰的结构。应用了四个主要指标,损失函数为5.03%,验证损失函数为4.82%,验证准确率为98.49%,准确率为98.45%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验