Sun Qiyao, Yuan Ye, Zhong Yuanping, Lutz-Bueno Viviane, Zhou Jiangtao, Thorwarth Kerstin, Siqueira Gilberto, Fischer Peter
Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
J Colloid Interface Sci. 2025 Dec;699(Pt 1):138073. doi: 10.1016/j.jcis.2025.138073. Epub 2025 Jun 6.
Cellulose nanocrystals (CNCs) offer the potential for control over their contour length, aspect ratio, surface chemistry, and the resulting colloidal, thermal, and optical properties. They have garnered significant attention in the sustainable manufacturing of nanocomposites for applications in structural coloration, smart security tags, and colorimetric sensors. The underlying phase behavior including the complex interplay of surface-modified CNCs on the molecular interactions is still unclear and needs to be addressed prior the design of new functional materials.
We present self-assembled CNC liquid crystalline phase behavior mediated by Poly(N-isopropylacrylamide) (PNIPAM) brush grafted from the CNC surface and explore the impact of PNIPAM brush length and thermo-responsive behavior on the liquid crystalline phases. The grafted PNIPAM brushes allow to fine tune the CNC diameter and the resulting self-assembly.
CNCs bearing short polymer brushes form various liquid crystalline phases, with the critical points in the isotropic-cholesteric-nematic phase transition shifting to higher concentrations with longer brushes. This shift is further elucidated through the application of Onsager theory incorporating the changing electrostatic repulsion and steric hindrance. Excessively long polymer brushes inhibit the formation of cholesteric tactoids. The characteristic texture of the PNIPAM-CNC liquid crystalline phases observed under polarizing optical microscopes disappear and reappear upon heating and cooling, switched by the thermo-responsive PNIPAM brush aggregates on the CNC surface. These findings enrich our understanding of cholesteric liquid crystalline systems and extend their application in thermal stimuli-responsive soft nanotechnology.
纤维素纳米晶体(CNCs)具有控制其轮廓长度、长径比、表面化学性质以及由此产生的胶体、热学和光学性质的潜力。它们在用于结构着色、智能安全标签和比色传感器的纳米复合材料的可持续制造中受到了广泛关注。包括表面改性的CNCs在分子相互作用上的复杂相互作用在内的潜在相行为仍不清楚,需要在设计新型功能材料之前加以解决。
我们展示了由从CNC表面接枝的聚(N-异丙基丙烯酰胺)(PNIPAM)刷介导的自组装CNC液晶相行为,并探讨了PNIPAM刷长度和热响应行为对液晶相的影响。接枝的PNIPAM刷可以微调CNC的直径和由此产生的自组装。
带有短聚合物刷的CNCs形成各种液晶相,随着刷长度的增加,各向同性-胆甾相-向列相转变的临界点向更高浓度移动。通过应用包含变化的静电排斥和空间位阻的昂萨格理论,进一步阐明了这种转变。过长的聚合物刷会抑制胆甾相类晶的形成。在偏光显微镜下观察到的PNIPAM-CNC液晶相的特征纹理在加热和冷却时消失并重新出现,由CNC表面上的热响应性PNIPAM刷聚集体切换。这些发现丰富了我们对胆甾相液晶系统的理解,并扩展了它们在热刺激响应性软纳米技术中的应用。