Ren Yuxiang, Lin Lihuan, Abdallah Mohammad, Zhu Xueting, Liu Haiyin, Fabb Stewart A, Payne Thomas J, Pouton Colin W, Johnston Angus P R, Trevaskis Natalie L
Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC 3000, Australia.
J Control Release. 2025 Aug 10;384:113945. doi: 10.1016/j.jconrel.2025.113945. Epub 2025 Jun 10.
Ionizable lipids play a crucial role in mRNA-lipid nanoparticle (LNP) formulations by facilitating mRNA encapsulation, promoting cell uptake, and enhancing endosomal escape of mRNA-LNPs. Despite their importance in mRNA delivery, the specific effects of ionizable lipids on mRNA-LNP in vivo pharmacokinetics (PK) and biodistribution remain underexplored. This study examines the effect of SM-102, ALC-0315, DLin-MC3-DMA (MC3), and 113-O12B ionizable lipids in mRNA-LNP formulations on plasma PK of lipid and mRNA, and biodistribution of expressed protein following subcutaneous (SC) and intravenous (IV) administration in mice. Our findings highlight that altering ionizable lipids significantly influences both plasma PK of mRNA and LNP lipids, and tissue biodistribution profiles of expressed protein. The SM-102 LNP formulation demonstrated superior mRNA protection in plasma, resulting in the highest bioavailability - approximately three-fold higher than other lipids following SC injection. Conversely, ALC-0315 LNPs resulted in prolonged lipid exposure but reduced mRNA plasma concentrations relative to SM-102 LNPs across both administration routes. Despite these PK differences, SM-102 and ALC-0315 LNPs achieved comparable overall tissue protein expression with both injection routes which our data suggest may be because the mRNA in LNP in plasma at early timepoints is more available for expression. MC3 ionizable lipid exhibited the longest terminal half-life, accompanied by delayed mRNA expression after both administrations. Following IV administration, protein expression was predominantly observed in the liver across all formulations, with biodistribution patterns shifting over time. In contrast, SC injections led to higher localized expression, particularly in the skin and dosing-side lymph nodes. These findings provide valuable insights into the impact of the ionizable lipid on mRNA-LNP PK and biodistribution, suggesting that the choice of ionizable lipid significantly impacts mRNA-LNP PK and biodistribution of expressed protein, and can be strategically modified to optimize the PK and biodistribution of mRNA-LNP formulations for specific indications to provide more effective therapies while reducing off-target effects.
可电离脂质在信使核糖核酸-脂质纳米颗粒(mRNA-LNP)制剂中发挥着关键作用,它有助于mRNA的包裹、促进细胞摄取并增强mRNA-LNP的内体逃逸。尽管其在mRNA递送中具有重要性,但可电离脂质对mRNA-LNP体内药代动力学(PK)和生物分布的具体影响仍未得到充分研究。本研究考察了mRNA-LNP制剂中的SM-102、ALC-0315、DLin-MC3-DMA(MC3)和113-O12B可电离脂质对脂质和mRNA血浆PK的影响,以及在小鼠皮下(SC)和静脉(IV)给药后表达蛋白的生物分布。我们的研究结果表明,改变可电离脂质会显著影响mRNA和LNP脂质的血浆PK以及表达蛋白的组织生物分布谱。SM-102 LNP制剂在血浆中对mRNA具有卓越的保护作用,皮下注射后其生物利用度最高——比其他脂质高出约三倍。相反,与两种给药途径的SM-102 LNP相比,ALC-0315 LNP导致脂质暴露时间延长,但mRNA血浆浓度降低。尽管存在这些PK差异,但SM-102和ALC-0315 LNP在两种注射途径下均实现了相当的总体组织蛋白表达,我们的数据表明这可能是因为早期血浆中LNP内的mRNA更易于表达。MC3可电离脂质的终末半衰期最长,两种给药后mRNA表达均延迟。静脉给药后,所有制剂在肝脏中均主要观察到蛋白表达,生物分布模式随时间变化。相比之下,皮下注射导致更高的局部表达,尤其是在皮肤和给药侧淋巴结。这些发现为可电离脂质对mRNA-LNP PK和生物分布的影响提供了有价值的见解,表明可电离脂质的选择显著影响mRNA-LNP PK和表达蛋白的生物分布,并且可以进行策略性调整以优化mRNA-LNP制剂的PK和生物分布,用于特定适应症,在减少脱靶效应的同时提供更有效的治疗。