Suppr超能文献

早期帕金森病中深部灰质萎缩和多巴胺可用性的数据驱动亚型的临床相关性。

Clinical correlates of data-driven subtypes of deep gray matter atrophy and dopamine availability in early Parkinson's disease.

作者信息

Oh Yoonsang, Kim Joong-Seok, Park Gilsoon, Yoo Sang-Won, Ryu Dong-Woo, Kim Hosung

机构信息

Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

出版信息

NPJ Parkinsons Dis. 2025 Jun 12;11(1):165. doi: 10.1038/s41531-025-01037-5.

Abstract

Recent machine-learning techniques may be useful to identify subtypes with distinct spatial patterns of biomarker abnormality in the various neurodegenerative diseases. Using the Subtype and Stage Inference (SuStaIn) technique, we categorized data-driven subtypes of PD by examining the deep gray matter volume and dopamine availability and compared cardiac denervation, cognition, and motor symptoms between these subtypes. The SuStaIn algorithm revealed two distinctive subtypes, which were well replicated in an external dataset. Subtype 1 was characterized by lower dopamine availability apparent at early inferred stages, severe cardiac denervation, mild cognitive dysfunction in the early stage, and patterns suggesting accelerated motor and cognitive dysfunction associated with later stages. In contrast, subtype 2 showed patterns indicative of earlier brain atrophy, mild cardiac denervation, and severe cognitive dysfunction apparent at early inferred stages, with no significant correlation between motor and cognitive status and SuStaIn stage. These findings suggest that the machine-learning model can identify heterogeneity in PD biomarker profiles, offering insights into potential region and stage-specific patterns of biomarker abnormality and their clinical implications.

摘要

最近的机器学习技术可能有助于识别各种神经退行性疾病中具有不同生物标志物异常空间模式的亚型。使用亚型和阶段推断(SuStaIn)技术,我们通过检查深部灰质体积和多巴胺可用性对数据驱动的帕金森病亚型进行了分类,并比较了这些亚型之间的心脏去神经支配、认知和运动症状。SuStaIn算法揭示了两种不同的亚型,这在外部数据集中得到了很好的重复。亚型1的特征是在早期推断阶段多巴胺可用性较低,严重的心脏去神经支配,早期轻度认知功能障碍,以及与后期相关的运动和认知功能障碍加速模式。相比之下,亚型2显示出早期脑萎缩、轻度心脏去神经支配以及在早期推断阶段明显的严重认知功能障碍的模式,运动和认知状态与SuStaIn阶段之间无显著相关性。这些发现表明,机器学习模型可以识别帕金森病生物标志物谱中的异质性,为生物标志物异常的潜在区域和阶段特异性模式及其临床意义提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cea6/12162818/102136a57a69/41531_2025_1037_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验