Suppr超能文献

人工智能在肩袖撕裂检测中的应用:基于MRI模型的系统评价

Artificial Intelligence in Rotator Cuff Tear Detection: A Systematic Review of MRI-Based Models.

作者信息

Longo Umile Giuseppe, Bandini Benedetta, Mancini Letizia, Merone Mario, Schena Emiliano, de Sire Alessandro, D'Hooghe Pieter, Pecchia Leandro, Carnevale Arianna

机构信息

Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy.

Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy.

出版信息

Diagnostics (Basel). 2025 May 23;15(11):1315. doi: 10.3390/diagnostics15111315.

Abstract

: This descriptive systematic review aimed to assess in the available literature on the current application and overall performance of Artificial Intelligence (AI) models in the diagnosis and classification of Rotator Cuff Tears (RCTs) using MRIs. : The systematic review was performed by two of the authors from 2020 to November 2024. Only diagnostic studies involving AI application to MRI images of the rotator cuff were considered, including supraspinatus and biceps tears. Studies evaluating AI applications to Ultrasound or X-ray, or including only healthy rotator cuffs, were not analyzed in this paper. The coronal plane in the T2 sequence emerged as the predominant imaging protocol, with the VGG network being the most widely utilized AI model. The studies included in this research exhibited a solid performance of the AI models with accuracy, ranging from 71.0% to 100%. The statistical analysis revealed no significant differences ( > 0.05) in accuracy, sensitivity, specificity, or precision between AI and human experts across studies that included such comparisons. While AI can significantly improve diagnostic efficiency and workflow optimization, future studies must focus on external validation, regulatory approval, and AI-human collaboration models to ensure safe and effective integration into orthopedic imaging.

摘要

本描述性系统评价旨在评估现有文献中人工智能(AI)模型在使用磁共振成像(MRI)诊断和分类肩袖撕裂(RCT)方面的当前应用和整体性能。

该系统评价由两位作者于2020年至2024年11月进行。仅考虑涉及AI应用于肩袖MRI图像的诊断研究,包括冈上肌和肱二头肌撕裂。评估AI在超声或X射线上的应用,或仅包括健康肩袖的研究,本文未作分析。T2序列的冠状面成为主要的成像方案,VGG网络是使用最广泛的AI模型。本研究纳入的研究显示AI模型表现良好,准确率在71.0%至100%之间。统计分析表明,在包括此类比较的研究中,AI与人类专家在准确性、敏感性、特异性或精确性方面无显著差异(>0.05)。虽然AI可以显著提高诊断效率和优化工作流程,但未来的研究必须专注于外部验证、监管批准以及AI与人类的协作模式,以确保安全有效地整合到骨科成像中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a087/12154083/92094b92272c/diagnostics-15-01315-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验