Suppr超能文献

用于量化帕金森病精细运动表现的综合增强现实测试平台的验证

Validation of the Comprehensive Augmented Reality Testing Platform to Quantify Parkinson's Disease Fine Motor Performance.

作者信息

Bazyk Andrew, Kaya Ryan D, Waltz Colin, Zimmerman Eric, Johnston Joshua D, Scelina Kathryn, Walter Benjamin L, Siddiqui Junaid, Rosenfeldt Anson B, Miller Koop Mandy, Alberts Jay L

机构信息

Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA.

Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA.

出版信息

J Clin Med. 2025 Jun 4;14(11):3966. doi: 10.3390/jcm14113966.

Abstract

: Technological approaches for the objective, quantitative assessment of motor functions have the potential to improve the medical management of people with Parkinson's disease (PwPD), offering more precise, data-driven insights to enhance diagnosis, monitoring, and treatment. Markerless motion capture (MMC) is a promising approach for the integration of biomechanical analysis into clinical practice. The aims of this project were to evaluate a commercially available MMC system, develop and validate a custom MMC data processing algorithm, and evaluate the effectiveness of the algorithm in discriminating fine motor performance between PwPD and healthy controls (HCs). : A total of 58 PwPD and 25 HCs completed finger-tapping assessments, administered and recorded by a self-worn augmented reality headset. Fine motor performance was evaluated using the headset's built-in hand tracking software (Native-MMC) and a custom algorithm (CART-MMC). Outcomes from each were compared against a gold-standard motion capture system (Traditional-MC) to determine the equivalence. Known-group validity was evaluated using CART-MMC. : A total of 82 trials were analyzed for equivalence against the Traditional-MC, and 152 trials were analyzed for known-group validity. The CART-MMC outcomes were statistically equivalent to Traditional-MC (within 5%) for tap count, frequency, amplitude, and opening velocity metrics. The Native-MMC did not meet equivalence with the Traditional-MC, deviating by an average of 24% across all outcomes. The CART-MMC captured significant differences between PwPD and HCs for tapping amplitude, amplitude variability, frequency variability, finger opening and closing velocities, and their respective variabilities, and normalized path length. : The biomechanical data gathered using a commercially available augmented reality device and analyzed via a custom algorithm accurately characterize fine motor performance in PwPD.

摘要

用于客观、定量评估运动功能的技术方法有潜力改善帕金森病患者(PwPD)的医疗管理,提供更精确、数据驱动的见解以加强诊断、监测和治疗。无标记运动捕捉(MMC)是将生物力学分析整合到临床实践中的一种有前景的方法。本项目的目的是评估一种商用MMC系统,开发并验证一种定制的MMC数据处理算法,并评估该算法在区分PwPD和健康对照(HCs)之间精细运动表现方面的有效性。

共有58名PwPD患者和25名HCs完成了由自佩戴式增强现实头显进行管理和记录的手指轻敲评估。使用头显的内置手部跟踪软件(原生MMC)和一种定制算法(CART-MMC)评估精细运动表现。将每种方法的结果与金标准运动捕捉系统(传统MC)进行比较以确定等效性。使用CART-MMC评估已知组效度。

共分析了82次试验与传统MC的等效性,以及152次试验的已知组效度。对于敲击次数、频率、幅度和张开速度指标,CART-MMC的结果与传统MC在统计学上等效(在5%以内)。原生MMC与传统MC未达到等效,所有结果平均偏差24%。CART-MMC捕捉到了PwPD和HCs在敲击幅度、幅度变异性、频率变异性、手指张开和闭合速度及其各自的变异性以及归一化路径长度方面的显著差异。

使用商用增强现实设备收集并通过定制算法分析的生物力学数据准确地表征了PwPD的精细运动表现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac33/12155821/e941c94d5a7c/jcm-14-03966-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验