Suppr超能文献

人工智能助力植物科学:变革林业监测、疾病预测与气候适应。

AI-Powered Plant Science: Transforming Forestry Monitoring, Disease Prediction, and Climate Adaptation.

作者信息

Xu Zuo, Jiang Dalong

机构信息

Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.

Hainan Dongzhaigang Mangrove Ecosystem Provincial Observation and Research Station, Haikou 571129, China.

出版信息

Plants (Basel). 2025 May 26;14(11):1626. doi: 10.3390/plants14111626.

Abstract

The integration of artificial intelligence (AI) and forestry is driving transformative advances in precision monitoring, disaster management, carbon sequestration, and biodiversity conservation. However, significant knowledge gaps persist in cross-ecological model generalisation, multi-source data fusion, and ethical implementation. This review provides a comprehensive overview of AI's transformative role in forestry, focusing on three key areas: resource monitoring, disaster management, and sustainability. Data were collected via a comprehensive literature search of academic databases from 2019 to 2025. The review identified several key applications of AI in forestry, including high-precision resource monitoring with sub-metre accuracy in delineating tree canopies, enhanced disaster management with high recall rates for wildfire detection, and optimised carbon sequestration in mangrove forests. Despite these advancements, challenges remain in cross-ecological model generalisation, multi-source data fusion, and ethical implementation. Future research should focus on developing robust, scalable AI models that can be integrated into existing forestry management systems. Policymakers and practitioners should collaborate to ensure that AI-driven solutions are implemented in a way that balances technological innovation with ecosystem resilience and ethical considerations.

摘要

人工智能(AI)与林业的融合正在推动精准监测、灾害管理、碳固存和生物多样性保护等领域的变革性进展。然而,在跨生态模型泛化、多源数据融合和伦理实施方面仍存在重大知识空白。本综述全面概述了人工智能在林业中的变革性作用,重点关注三个关键领域:资源监测、灾害管理和可持续性。通过对2019年至2025年学术数据库的全面文献检索收集数据。该综述确定了人工智能在林业中的几个关键应用,包括在描绘树冠时具有亚米级精度的高精度资源监测、在野火检测中具有高召回率的增强灾害管理以及红树林中优化的碳固存。尽管取得了这些进展,但在跨生态模型泛化、多源数据融合和伦理实施方面仍存在挑战。未来的研究应专注于开发可集成到现有林业管理系统中的强大、可扩展的人工智能模型。政策制定者和从业者应合作,确保以平衡技术创新与生态系统恢复力和伦理考量的方式实施人工智能驱动的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d004/12157806/76b01d22b04f/plants-14-01626-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验