文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

生物医学中的磁性二维过渡金属基纳米材料:癌症治疗中的机遇与挑战

Magnetic 2D Transition-Metal-Based Nanomaterials in Biomedicine: Opportunities and Challenges in Cancer Therapy.

作者信息

Sukur Sunčica, Ranc Václav

机构信息

Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital, 779 00 Olomouc, Czech Republic.

Regional Centre of Advanced Technology and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 775 15 Olomouc, Czech Republic.

出版信息

Materials (Basel). 2025 May 30;18(11):2570. doi: 10.3390/ma18112570.


DOI:10.3390/ma18112570
PMID:40508567
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12155818/
Abstract

Severe systemic toxicity and poor targeting efficiency remain major limitations of traditional chemotherapy, emphasising the need for smarter drug delivery systems. Magnetic 2D transition-metal-based nanomaterials offer a promising approach, as they can be designed to combine high drug loading, precise targeting, and controlled release. The key material classes-transition metal dichalcogenides, transition metal carbides/nitrides, transition metal oxides, and metal-organic frameworks-share important physicochemical properties. These include high surface-to-volume ratios, tuneable functionalities, and efficient intracellular uptake. Incorporating magnetic nanoparticles into these 2D structures broadens their potential beyond drug delivery, through enabling multimodal therapeutic strategies such as hyperthermia induction, real-time imaging, and photothermal or photodynamic therapy. This review outlines the potential of magnetic 2D transition-metal-based nanomaterials for biomedical applications by evaluating their therapeutic performance and biological response. In parallel, it offers a critical analysis of how differences in physicochemical properties influence their potential for specific cancer treatment applications, highlighting the most promising uses of each in bionanomedicine.

摘要

严重的全身毒性和较差的靶向效率仍然是传统化疗的主要局限性,这凸显了对更智能药物递送系统的需求。基于二维过渡金属的磁性纳米材料提供了一种很有前景的方法,因为它们可以被设计成兼具高载药量、精确靶向和控释功能。关键的材料类别——过渡金属二硫属化物、过渡金属碳化物/氮化物、过渡金属氧化物和金属有机框架——具有重要的物理化学性质。这些性质包括高的表面体积比、可调节的功能以及高效的细胞内摄取。将磁性纳米颗粒整合到这些二维结构中,通过实现诸如热疗诱导、实时成像以及光热或光动力疗法等多模态治疗策略,拓宽了它们在药物递送之外的潜在应用范围。本综述通过评估基于二维过渡金属的磁性纳米材料的治疗性能和生物学反应,概述了其在生物医学应用中的潜力。同时,对物理化学性质的差异如何影响它们在特定癌症治疗应用中的潜力进行了批判性分析,突出了每种材料在生物纳米医学中最有前景的用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/7d1adba4e767/materials-18-02570-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/b3cd61088b23/materials-18-02570-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/6eb363214b20/materials-18-02570-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/16883fa5f75d/materials-18-02570-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/a911db09adc0/materials-18-02570-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/af5881ec552f/materials-18-02570-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/23ffae6cb200/materials-18-02570-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/42c7f976fa05/materials-18-02570-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/200a7b2d7030/materials-18-02570-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/d5f51187c140/materials-18-02570-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/b7c4a7eb77df/materials-18-02570-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/2ec9c7749211/materials-18-02570-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/7d1adba4e767/materials-18-02570-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/b3cd61088b23/materials-18-02570-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/6eb363214b20/materials-18-02570-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/16883fa5f75d/materials-18-02570-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/a911db09adc0/materials-18-02570-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/af5881ec552f/materials-18-02570-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/23ffae6cb200/materials-18-02570-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/42c7f976fa05/materials-18-02570-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/200a7b2d7030/materials-18-02570-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/d5f51187c140/materials-18-02570-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/b7c4a7eb77df/materials-18-02570-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/2ec9c7749211/materials-18-02570-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef3/12155818/7d1adba4e767/materials-18-02570-g012.jpg

相似文献

[1]
Magnetic 2D Transition-Metal-Based Nanomaterials in Biomedicine: Opportunities and Challenges in Cancer Therapy.

Materials (Basel). 2025-5-30

[2]
2D layered nanomaterials for therapeutics delivery.

Curr Opin Biomed Eng. 2021-12

[3]
Magnetic two-dimensional nanocomposites for multimodal antitumor therapy: a recent review.

J Mater Chem B. 2024-2-7

[4]
Emerging 2D Nanomaterials for Biomedical Applications.

Mater Today (Kidlington). 2021-11

[5]
2D Nanomaterials for Cancer Theranostic Applications.

Adv Mater. 2019-7-28

[6]
Two-dimensional cancer theranostic nanomaterials: Synthesis, surface functionalization and applications in photothermal therapy.

J Control Release. 2019-2-13

[7]
Emerging 2D Nanomaterials-Integrated Hydrogels: Advancements in Designing Theragenerative Materials for Bone Regeneration and Disease Therapy.

Adv Sci (Weinh). 2024-8

[8]
Two-Dimensional Transition Metal Dichalcogenides: Synthesis, Biomedical Applications and Biosafety Evaluation.

Front Bioeng Biotechnol. 2020-4-7

[9]
Two-Dimensional Nanomaterials beyond Graphene for Biomedical Applications.

J Funct Biomater. 2022-3-9

[10]
Multifunctional Iron Oxide Magnetic Nanoparticles for Biomedical Applications: A Review.

Materials (Basel). 2022-1-10

本文引用的文献

[1]
MXenes and MXene-based composites for biomedical applications.

J Mater Chem B. 2025-4-2

[2]
Correction to "Multifunctional siRNA-Laden Hybrid Nanoplatform for Noninvasive PA/IR Dual-Modal Imaging-Guided Enhanced Photogenetherapy".

ACS Appl Mater Interfaces. 2024-11-13

[3]
Transition Metal Oxide Nanomaterials: New Weapons to Boost Anti-Tumor Immunity Cycle.

Nanomaterials (Basel). 2024-6-21

[4]
Metal-organic frameworks for biomedical applications: A review.

Adv Colloid Interface Sci. 2024-9

[5]
Platelet Membrane-Camouflaged Silver Metal-Organic Framework Biomimetic Nanoparticles for the Treatment of Triple-Negative Breast Cancer.

Mol Pharm. 2024-7-1

[6]
CD44: A New Prognostic Marker in Colorectal Cancer?

Cancers (Basel). 2024-4-19

[7]
Current approaches in smart nano-inspired drug delivery: A narrative review.

Health Sci Rep. 2024-4-24

[8]
Unleashing the potential of tungsten disulfide: Current trends in biosensing and nanomedicine applications.

Heliyon. 2024-1-11

[9]
Enhanced Sensitivity of A549 Cells to Doxorubicin with WS and WSe Nanosheets via the Induction of Autophagy.

Int J Mol Sci. 2024-1-18

[10]
Iron Oxide Nanoparticle-Assisted Delamination of TiCT MXenes: A New Approach to Produce Magnetic MXene-Based Composites.

Nanomaterials (Basel). 2023-12-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索