Suppr超能文献

通过预测相关性对成人和儿科患者重症监护病房转运风险进行护理诊断排序:一种基于随机森林的机器学习方法

Ranking Nursing Diagnoses by Predictive Relevance for Intensive Care Unit Transfer Risk in Adult and Pediatric Patients: A Machine Learning Approach with Random Forest.

作者信息

Cesare Manuele, Nurchis Mario Cesare, Damiani Gianfranco, Cocchieri Antonello

机构信息

Section of Hygiene, Woman and Child Health and Public Health, Gemelli IRCCS University Hospital Foundation, 00168 Rome, Italy.

Section of Hygiene, Department of Health Science and Public Health, Catholic University of the Sacred Heart, 00168 Rome, Italy.

出版信息

Healthcare (Basel). 2025 Jun 4;13(11):1339. doi: 10.3390/healthcare13111339.

Abstract

: In hospital settings, the wide variability of acute and complex chronic conditions-among both adult and pediatric patients-requires advanced approaches to detect early signs of clinical deterioration and the risk of transfer to the intensive care unit (ICU). Nursing diagnoses (NDs), standardized representations of patient responses to actual or potential health problems, reflect nursing complexity. However, most studies have focused on the total number of NDs rather than the individual role each diagnosis may play in relation to outcomes such as ICU transfer. This study aimed to identify and rank the specific NDs most strongly associated with ICU transfers in hospitalized adult and pediatric patients. : A retrospective, monocentric observational study was conducted using electronic health records from an Italian tertiary hospital. The dataset included 42,735 patients (40,649 adults and 2086 pediatric), and sociodemographic, clinical, and nursing data were collected. A random forest model was applied to assess the predictive relevance (i.e., variable importance) of individual NDs in relation to ICU transfers. : Among adult patients, the NDs most strongly associated with ICU transfer were , , , and . In the pediatric population, , , , , and emerged as the NDs most frequently linked to ICU transfer. The models showed good performance and generalizability, with stable out-of-bag and validation errors across iterations. : A prioritized ranking of NDs appears to be associated with ICU transfers, suggesting their potential utility as early warning indicators of clinical deterioration. Patients presenting with high-risk diagnostic profiles should be prioritized for enhanced clinical surveillance and proactive intervention, as they may represent vulnerable populations.

摘要

在医院环境中,成人和儿科患者的急性和复杂慢性疾病存在广泛差异,这就需要采用先进的方法来检测临床恶化的早期迹象以及转入重症监护病房(ICU)的风险。护理诊断(NDs)是患者对实际或潜在健康问题反应的标准化表现形式,反映了护理的复杂性。然而,大多数研究都集中在护理诊断的总数上,而不是每个诊断在诸如ICU转入等结局方面可能发挥的个体作用。本研究旨在识别并对与住院成人和儿科患者ICU转入最密切相关的特定护理诊断进行排序。

一项回顾性、单中心观察性研究使用了一家意大利三级医院的电子健康记录。数据集包括42735名患者(40649名成人和2086名儿科患者),并收集了社会人口统计学、临床和护理数据。应用随机森林模型评估个体护理诊断与ICU转入的预测相关性(即变量重要性)。

在成年患者中,与ICU转入最密切相关的护理诊断是 、 、 、 和 。在儿科人群中, 、 、 、 、 和 成为与ICU转入最常相关的护理诊断。模型表现出良好的性能和可推广性,在各次迭代中袋外误差和验证误差稳定。

护理诊断的优先排序似乎与ICU转入相关,表明它们作为临床恶化早期预警指标的潜在效用。具有高风险诊断特征的患者应优先接受强化临床监测和积极干预,因为他们可能代表了弱势群体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ac/12154488/93cfe8dc8680/healthcare-13-01339-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验