Suppr超能文献

基于机器学习的无铅双钙钛矿光伏材料的预测与筛选

Prediction and Screening of Lead-Free Double Perovskite Photovoltaic Materials Based on Machine Learning.

作者信息

Wang Juan, Wang Yizhe, Liu Xiaoqin, Wang Xinzhong

机构信息

Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China.

出版信息

Molecules. 2025 May 29;30(11):2378. doi: 10.3390/molecules30112378.

Abstract

The search for stable, lead-free perovskite materials is critical for developing efficient and environmentally friendly energy solutions. In this study, machine learning methods were applied to predict the bandgap and formation energy of double perovskites, aiming to identify promising photovoltaic candidates. A dataset of 1053 double perovskites was extracted from the Materials Project database, with 50 feature descriptors generated. Feature selection was carried out using Pearson correlation and mRMR methods, and 23 key features for bandgap prediction and 18 key features for formation energy prediction were determined. Four algorithms, including gradient-boosting regression (GBR), random forest regression (RFR), LightGBM, and XGBoost, were evaluated, with XGBoost demonstrating the best performance (R = 0.934 for bandgap, R = 0.959 for formation energy; MAE = 0.211 eV and 0.013 eV/atom). The SHAP (Shapley Additive Explanations) analysis revealed that the X-site electron affinity positively influences the bandgap, while the B″-site first and third ionization energies exhibit strong negative effects. Formation energy is primarily governed by the X-site first ionization energy and the electronegativities of the B' and B″ sites. To identify optimal photovoltaic materials, 4573 charge-neutral double perovskites were generated via elemental substitution, with 2054 structurally stable candidates selected using tolerance and octahedral factors. The XGBoost model predicted bandgaps, yielding 99 lead-free double perovskites with ideal bandgaps (1.3~1.4 eV). Among them, four candidates are known compounds according to the Materials Project database, namely CaNbFeO, CaFeTaO, LaCrFeO, and CsYAgBr, while the remaining 95 candidate perovskites are unknown compounds. Notably, X-site elements (Se, S, O, C) and B″-site elements (Pd, Ir, Fe, Ta, Pt, Cu) favor narrow bandgap formation. These findings provide valuable guidance for designing high-performance, non-toxic photovoltaic materials.

摘要

寻找稳定的无铅钙钛矿材料对于开发高效且环保的能源解决方案至关重要。在本研究中,应用机器学习方法来预测双钙钛矿的带隙和形成能,旨在识别有前景的光伏候选材料。从材料项目数据库中提取了一个包含1053种双钙钛矿的数据集,并生成了50个特征描述符。使用皮尔逊相关性和mRMR方法进行特征选择,确定了用于带隙预测的23个关键特征和用于形成能预测的18个关键特征。评估了四种算法,包括梯度提升回归(GBR)、随机森林回归(RFR)、LightGBM和XGBoost,其中XGBoost表现最佳(带隙的R = 0.934,形成能的R = 0.959;MAE = 0.211 eV和0.013 eV/原子)。SHAP(Shapley加性解释)分析表明,X位点电子亲和性对带隙有正向影响,而B″位点的第一和第三电离能表现出强烈的负效应。形成能主要由X位点的第一电离能以及B'和B″位点的电负性决定。为了识别最佳光伏材料,通过元素取代生成了4573种电荷中性双钙钛矿,使用容忍度和八面体因子选择了2054种结构稳定的候选材料。XGBoost模型预测了带隙,产生了99种具有理想带隙(1.3~1.4 eV)的无铅双钙钛矿。其中,根据材料项目数据库,有四种候选物是已知化合物,即CaNbFeO、CaFeTaO、LaCrFeO和CsYAgBr,而其余95种候选钙钛矿是未知化合物。值得注意的是,X位点元素(Se、S、O、C)和B″位点元素(Pd、Ir、Fe、Ta、Pt、Cu)有利于窄带隙的形成。这些发现为设计高性能、无毒的光伏材料提供了有价值的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32ea/12155886/8b619e541e04/molecules-30-02378-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验