Zhou Yin, Chen Yutong, Zhao Wentao, Wang Jiafeng, Chen Yi, Wen Haobo, He Yiyan, Li Ning, Mao Hongli, Cui Yuwen, Gu Zhongwei
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China.
Sino-Spain Joint Laboratory on Biomedical Materials (S2LBM), Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJ Tech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China.
ACS Nano. 2025 Jul 8;19(26):23659-23679. doi: 10.1021/acsnano.5c02488. Epub 2025 Jun 13.
Intracellular bacterial infections are challenging due to immune evasion and antibiotic resistance, especially within macrophages harboring dormant bacteria. Here, a synergistic antibacterial strategy is presented using the PG3M@GaPP nanoflowers, which integrate immune modulation, iron metabolism disruption, and antibacterial photodynamic therapy (APDT) to eliminate intracellular bacteria. This nanoflower encapsulates a gallium-protoporphyrin IX complex (GaPP) within mannose-functionalized poly-l-lysine dendrimers (PG3M), enabling targeted delivery to macrophages via mannose receptor recognition. PG3M@GaPP promotes macrophage polarization to the anti-inflammatory M2 phenotype, enhancing immune modulation and bacterial uptake. The platform's positive charge facilitates endosomal escape, releasing GaPP in the acidic intracellular environment, where free iron ions compete with gallium ions to form the iron-protoporphyrin IX complex (FePP). This disrupts the gallium/iron ion balance, enhancing the Trojan horse effect of gallium ions and inducing iron metabolism-dependent bacterial death. Additionally, laser activation of GaPP generates reactive oxygen species (ROS), further amplifying bacterial killing via APDT. and experiments show that PG3M@GaPP outperforms both free GaPP and commercial antibiotics in eliminating intracellular bacteria. These nanoflowers offers an alternative, nonantibiotic approach to combat intracellular infections, addressing drug resistance and providing a promising platform for antibacterial therapies.
由于免疫逃逸和抗生素耐药性,细胞内细菌感染具有挑战性,尤其是在含有休眠细菌的巨噬细胞内。在此,提出了一种使用PG3M@GaPP纳米花的协同抗菌策略,该策略整合了免疫调节、铁代谢破坏和抗菌光动力疗法(APDT)以消除细胞内细菌。这种纳米花在甘露糖功能化的聚-L-赖氨酸树枝状大分子(PG3M)中封装了一种镓-原卟啉IX复合物(GaPP),通过甘露糖受体识别实现对巨噬细胞的靶向递送。PG3M@GaPP促进巨噬细胞向抗炎M2表型极化,增强免疫调节和细菌摄取。该平台的正电荷有助于内体逃逸,在酸性细胞内环境中释放GaPP,在那里游离铁离子与镓离子竞争形成铁-原卟啉IX复合物(FePP)。这扰乱了镓/铁离子平衡,增强了镓离子的特洛伊木马效应并诱导铁代谢依赖性细菌死亡。此外,GaPP的激光激活产生活性氧(ROS),通过APDT进一步放大细菌杀伤作用。体外和体内实验表明,PG3M@GaPP在消除细胞内细菌方面优于游离GaPP和市售抗生素。这些纳米花提供了一种替代的、非抗生素的方法来对抗细胞内感染,解决耐药性问题,并为抗菌治疗提供了一个有前景的平台。