文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用初始类固醇治疗期间蛋白尿的系列变化进行机器学习,以预测儿童特发性肾病综合征的治疗反应和免疫抑制剂使用情况。

Machine learning using serial changes in proteinuria during initial steroid therapy to predict treatment response and immunosuppressant use in pediatric idiopathic nephrotic syndrome.

作者信息

Iida Takaya, Miura Kenichiro, Okamoto Takayuki, Fujinaga Shuichiro, Akioka Yuko, Takeshima Yasuhiro, Urushihara Maki, Hisano Masataka, Gotoh Yoshimitsu, Ohta Toshiyuki, Takaya Eichi, Miyauchi Carlos Makoto, Sonobe Shinya, Kaname Tadashi, Hattori Motoshi

机构信息

Department of Pediatric Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.

Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan.

出版信息

Clin Exp Nephrol. 2025 Jun 13. doi: 10.1007/s10157-025-02714-8.


DOI:10.1007/s10157-025-02714-8
PMID:40512323
Abstract

BACKGROUND: Epidemiological studies on idiopathic nephrotic syndrome (INS) in children have identified no definitive factors predicting steroid-resistant nephrotic syndrome (SRNS) or frequent relapsing nephrotic syndrome. Research using machine learning (ML) has been conducted to predict INS prognosis; however, no studies have evaluated serial changes in proteinuria during initial steroid therapy. METHODS: INS patient data were collected from 23 medical centers. ML using clinical and laboratory data at first presentation and time-series features generated using serial changes in urine protein to creatinine ratio (UPCR) during initial steroid therapy were performed to predict SRNS and immunosuppressant use in 329 and 190 patients, respectively. ML models were run to calculate the area under the curve (AUC) and to identify variables contributing to predicted outcomes using the backward stepwise method. RESULTS: In the SRNS prediction model, UPCR at the final analysis point (i.e., the last sequential day of UPCR input included for model analysis) and several preceding days substantially contributed to the prediction, with UPCR at the final analysis point being the most significant contributor. The immunosuppressant prediction model achieved an AUC ranging from 0.715 to 0.759 and showed that age, serum albumin, serum total cholesterol, and time-series features (approximate entropy, mean UPCR value between the 20th to 80th percentiles, and 70th percentile UPCR value) were significant contributors. CONCLUSIONS: Our ML suggested that UPCR at the final analysis point was an important predictor of SRNS. Age, serum albumin, serum total cholesterol and serial changes in proteinuria contributed to immunosuppressant use.

摘要

背景:关于儿童特发性肾病综合征(INS)的流行病学研究尚未确定预测激素抵抗型肾病综合征(SRNS)或频繁复发型肾病综合征的决定性因素。已开展利用机器学习(ML)预测INS预后的研究;然而,尚无研究评估初始激素治疗期间蛋白尿的连续变化。 方法:从23个医疗中心收集INS患者数据。分别对329例和190例患者进行了基于首次就诊时的临床和实验室数据以及利用初始激素治疗期间尿蛋白与肌酐比值(UPCR)的连续变化生成的时间序列特征的ML,以预测SRNS和免疫抑制剂的使用。运行ML模型以计算曲线下面积(AUC),并使用向后逐步法确定对预测结果有贡献的变量。 结果:在SRNS预测模型中,最终分析点(即模型分析所纳入的UPCR输入的最后连续日期)及此前几天对预测有显著贡献,其中最终分析点的UPCR贡献最大。免疫抑制剂预测模型的AUC在0.715至0.759之间,表明年龄、血清白蛋白、血清总胆固醇和时间序列特征(近似熵、第20至80百分位数之间的平均UPCR值以及第70百分位数的UPCR值)是显著的贡献因素。 结论:我们的ML研究表明,最终分析点的UPCR是SRNS的重要预测指标。年龄、血清白蛋白、血清总胆固醇和蛋白尿的连续变化有助于免疫抑制剂的使用。

相似文献

[1]
Machine learning using serial changes in proteinuria during initial steroid therapy to predict treatment response and immunosuppressant use in pediatric idiopathic nephrotic syndrome.

Clin Exp Nephrol. 2025-6-13

[2]
Machine learning models for predicting steroid-resistant of nephrotic syndrome.

Front Immunol. 2023

[3]
Diagnostic efficacy and influence factors of urinary protein/creatinine ratio replacing 24-h urine protein as an evaluator of proteinuria in children.

Int Urol Nephrol. 2022-6

[4]
Correlation of urine protein/creatinine ratios to 24-h urinary protein for quantitating proteinuria in children.

Pediatr Nephrol. 2020-3

[5]
Comparison of three spot proteinuria measurements for pediatric nephrotic syndrome: based on the International pediatric Nephrology Association 2022 Guidelines.

Ren Fail. 2023

[6]
Idiopathic nephrotic syndrome in Syrian children: clinicopathological spectrum, treatment, and outcomes.

Pediatr Nephrol. 2024-8

[7]
Fractional excretion of total protein in patients with nephrotic syndrome.

Pediatr Int. 2024

[8]
Proteomic profiling identifies haptoglobin as a potential serum biomarker for steroid-resistant nephrotic syndrome.

Am J Nephrol. 2012-6-30

[9]
Urinary Neutrophil Gelatinase Associated Lipocalin: A Novel Biomarker Determining Steroid Responsiveness in Nephrotic Syndrome.

Cureus. 2023-2-1

[10]
[Establishment and validation of clinical prediction model for steroid-resistant nephrotic syndrome in children].

Zhonghua Er Ke Za Zhi. 2023-4-2

本文引用的文献

[1]
Risk Factors for Relapse in Childhood Nephrotic Syndrome.

Mymensingh Med J. 2023-10

[2]
Machine learning models for predicting steroid-resistant of nephrotic syndrome.

Front Immunol. 2023

[3]
IPNA clinical practice recommendations for the diagnosis and management of children with steroid-sensitive nephrotic syndrome.

Pediatr Nephrol. 2023-3

[4]
An introduction to machine learning and analysis of its use in rheumatic diseases.

Nat Rev Rheumatol. 2021-12

[5]
The role of machine learning in clinical research: transforming the future of evidence generation.

Trials. 2021-8-16

[6]
IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome.

Pediatr Nephrol. 2020-8

[7]
Prediction of Short- and Long-Term Outcomes in Childhood Nephrotic Syndrome.

Kidney Int Rep. 2019-12-27

[8]
Prognosis and acute complications at the first onset of idiopathic nephrotic syndrome in children: a nationwide survey in Japan (JP-SHINE study).

Nephrol Dial Transplant. 2021-2-20

[9]
Predictive risk factors of steroid dependent nephrotic syndrome in children.

J Nephropathol. 2017-7

[10]
Two-year outcome of the ISKDC regimen and frequent-relapsing risk in children with idiopathic nephrotic syndrome.

Clin J Am Soc Nephrol. 2013-1-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索