Iida Takaya, Miura Kenichiro, Okamoto Takayuki, Fujinaga Shuichiro, Akioka Yuko, Takeshima Yasuhiro, Urushihara Maki, Hisano Masataka, Gotoh Yoshimitsu, Ohta Toshiyuki, Takaya Eichi, Miyauchi Carlos Makoto, Sonobe Shinya, Kaname Tadashi, Hattori Motoshi
Department of Pediatric Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan.
Clin Exp Nephrol. 2025 Jun 13. doi: 10.1007/s10157-025-02714-8.
BACKGROUND: Epidemiological studies on idiopathic nephrotic syndrome (INS) in children have identified no definitive factors predicting steroid-resistant nephrotic syndrome (SRNS) or frequent relapsing nephrotic syndrome. Research using machine learning (ML) has been conducted to predict INS prognosis; however, no studies have evaluated serial changes in proteinuria during initial steroid therapy. METHODS: INS patient data were collected from 23 medical centers. ML using clinical and laboratory data at first presentation and time-series features generated using serial changes in urine protein to creatinine ratio (UPCR) during initial steroid therapy were performed to predict SRNS and immunosuppressant use in 329 and 190 patients, respectively. ML models were run to calculate the area under the curve (AUC) and to identify variables contributing to predicted outcomes using the backward stepwise method. RESULTS: In the SRNS prediction model, UPCR at the final analysis point (i.e., the last sequential day of UPCR input included for model analysis) and several preceding days substantially contributed to the prediction, with UPCR at the final analysis point being the most significant contributor. The immunosuppressant prediction model achieved an AUC ranging from 0.715 to 0.759 and showed that age, serum albumin, serum total cholesterol, and time-series features (approximate entropy, mean UPCR value between the 20th to 80th percentiles, and 70th percentile UPCR value) were significant contributors. CONCLUSIONS: Our ML suggested that UPCR at the final analysis point was an important predictor of SRNS. Age, serum albumin, serum total cholesterol and serial changes in proteinuria contributed to immunosuppressant use.
背景:关于儿童特发性肾病综合征(INS)的流行病学研究尚未确定预测激素抵抗型肾病综合征(SRNS)或频繁复发型肾病综合征的决定性因素。已开展利用机器学习(ML)预测INS预后的研究;然而,尚无研究评估初始激素治疗期间蛋白尿的连续变化。 方法:从23个医疗中心收集INS患者数据。分别对329例和190例患者进行了基于首次就诊时的临床和实验室数据以及利用初始激素治疗期间尿蛋白与肌酐比值(UPCR)的连续变化生成的时间序列特征的ML,以预测SRNS和免疫抑制剂的使用。运行ML模型以计算曲线下面积(AUC),并使用向后逐步法确定对预测结果有贡献的变量。 结果:在SRNS预测模型中,最终分析点(即模型分析所纳入的UPCR输入的最后连续日期)及此前几天对预测有显著贡献,其中最终分析点的UPCR贡献最大。免疫抑制剂预测模型的AUC在0.715至0.759之间,表明年龄、血清白蛋白、血清总胆固醇和时间序列特征(近似熵、第20至80百分位数之间的平均UPCR值以及第70百分位数的UPCR值)是显著的贡献因素。 结论:我们的ML研究表明,最终分析点的UPCR是SRNS的重要预测指标。年龄、血清白蛋白、血清总胆固醇和蛋白尿的连续变化有助于免疫抑制剂的使用。
Zhonghua Er Ke Za Zhi. 2023-4-2
Mymensingh Med J. 2023-10
Nat Rev Rheumatol. 2021-12
Kidney Int Rep. 2019-12-27
J Nephropathol. 2017-7
Clin J Am Soc Nephrol. 2013-1-31