Gao Peng, Luo Chao, Sung Herman H Y, Zheng Guanhaojie, Yang Shihe, Gao Xingyu, Zhao Yicheng, Sun Baoquan, Zhao Qing
State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China.
State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
Sci Adv. 2025 Jun 13;11(24):eadu0298. doi: 10.1126/sciadv.adu0298.
An emerging family of metal-halide perovskite semiconductors is highly attractive for optoelectronic applications because of their tunable light absorption, long-lived photogenerated carriers, and high defect tolerance. However, their inherent bandgaps limiting the photoabsorption below 1000 nanometers greatly constrain the further development of these materials and their optoelectronic devices. Here, we reported a straightforward strategy to achieving visible-to-infrared photoabsorption covering 630 to 2000 nanometers in inorganic perovskites by incorporating supramolecular crown ethers. Crown ethers enable supramolecular host-guest complexation and the formation of self-organizing Turing structures composed of original perovskites and supramolecular hybrid crystals. The visible-to-infrared photoabsorption is attributed to the interphase electron transitions in the Turing-structured perovskite hybrid matter system. Such visible-to-infrared photoabsorption is successfully translated into a photoelectronic response in an interdigitated photodetector. Our research extends the light absorption and detection capabilities of the perovskite hybrid semiconductors into the infrared region.
新兴的金属卤化物钙钛矿半导体家族因其可调节的光吸收、长寿命光生载流子和高缺陷容忍度而在光电子应用中极具吸引力。然而,它们固有的带隙将光吸收限制在1000纳米以下,这极大地限制了这些材料及其光电器件的进一步发展。在此,我们报道了一种直接的策略,通过引入超分子冠醚,在无机钙钛矿中实现630至2000纳米的可见到红外光吸收。冠醚能够实现超分子主客体络合,并形成由原始钙钛矿和超分子杂化晶体组成的自组织图灵结构。可见到红外光吸收归因于图灵结构的钙钛矿杂化物质系统中的相间电子跃迁。这种可见到红外光吸收在叉指式光电探测器中成功转化为光电响应。我们的研究将钙钛矿杂化半导体的光吸收和检测能力扩展到了红外区域。