Chouhan Lata, Ghimire Sushant, Subrahmanyam Challapalli, Miyasaka Tsutomu, Biju Vasudevanpillai
Graduate School of Environmental Science and Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan.
Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India.
Chem Soc Rev. 2020 May 26;49(10):2869-2885. doi: 10.1039/c9cs00848a.
Halide perovskites have emerged as a class of most promising and cost-effective semiconductor materials for next generation photoluminescent, electroluminescent and photovoltaic devices. These perovskites have high optical absorption coefficients and exhibit narrow-band bright photoluminescence, in addition to their halide-dependent tuneable bandgaps, low exciton binding energies, and long-range carrier diffusion. These properties make these perovskites superior to classical semiconductors such as silicon. Most importantly, the simple synthesis of perovskites in the form of high quality films, single crystals, nanocrystals and quantum dots has attracted newcomers to develop novel perovskites with unique optoelectronic properties for optical and photovoltaic applications. Here, we comprehensively review recent advances in the synthesis and optoelectronic properties of films, microcrystals, nanocrystals and quantum dots of lead halide and lead-free halide perovskites. Followed by the classification of synthesis, we address the ensemble and single particle properties of perovskites from the viewpoints of the confinement and transport of charge carriers or excitons. Further, we correlate the charge carrier properties of perovskite films, microcrystals, nanocrystals and quantum dots with the crystal structure and size, halide composition, temperature, and pressure. Finally, we illustrate the emerging applications of perovskites to solar cells, LEDs, and lasers, and discuss the ongoing challenges in the field.
卤化物钙钛矿已成为一类最具前景且性价比高的半导体材料,适用于下一代光致发光、电致发光和光伏器件。这些钙钛矿具有高光学吸收系数,除了其依赖卤化物的可调带隙、低激子结合能和长程载流子扩散外,还表现出窄带明亮的光致发光。这些特性使这些钙钛矿优于硅等传统半导体。最重要的是,以高质量薄膜、单晶、纳米晶体和量子点形式简单合成钙钛矿吸引了众多研究者开发具有独特光电特性的新型钙钛矿,用于光学和光伏应用。在此,我们全面综述了卤化铅和无铅卤化物钙钛矿的薄膜、微晶、纳米晶体和量子点在合成及光电特性方面的最新进展。在对合成方法进行分类之后,我们从电荷载流子或激子的限制和传输角度探讨了钙钛矿的整体和单粒子特性。此外,我们将钙钛矿薄膜、微晶、纳米晶体和量子点的电荷载流子特性与晶体结构和尺寸、卤化物组成、温度及压力相关联。最后,我们阐述了钙钛矿在太阳能电池、发光二极管和激光器方面的新兴应用,并讨论了该领域当前面临的挑战。