Shi Yudan, Parks Jerry M, Smith Jeremy C
Graduate School of Genome Science and Technology, The University of Tennessee at Knoxville, Knoxville, Tennessee 37996, United States.
Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831-6309, United States.
J Chem Inf Model. 2025 Jul 14;65(13):7156-7173. doi: 10.1021/acs.jcim.5c00298. Epub 2025 Jun 13.
The rapid development of computational approaches for predicting the structures of T cell receptors (TCRs) and TCR-peptide-major histocompatibility (TCR-pMHC) complexes, accelerated by AI breakthroughs such as AlphaFold, has made it feasible to calculate these structures with increasing accuracy. Although these tools show great potential, their relative accuracy and limitations remain unclear due to the lack of standardized benchmarks. Here, we systematically evaluate seven tools for predicting isolated TCR structures together with six tools for predicting TCR-pMHC complex structures. The methods include homology-based approaches, general prediction tools using AlphaFold, TCR-specific tools derived from AlphaFold2, and the newly developed tFold-TCR model. The evaluation uses a post-training data set comprising 40 αβ TCRs and 27 TCR-pMHC complexes (21 Class I and 6 Class II). Model accuracy is assessed at global, local, and interface levels using a variety of metrics. We find that each tool offers distinct advantages in various aspects of its predictions. AlphaFold2, AlphaFold3, and tFold-TCR excel in overall accuracy of TCR structure prediction, and TCRmodel2 and AlphaFold2 perform well in overall accuracy of TCR-pMHC structure prediction. However, TCR-specific tools derived from AlphaFold2 show lower accuracy in the framework region than both homology-based methods and general-purpose tools such as AlphaFold, and challenges remain for all in modeling CDR3 loops, docking orientations, TCR-peptide interfaces, and Class II MHC-peptide interfaces. These findings will guide researchers in selecting appropriate tools, emphasize the importance of using multiple evaluation metrics to assess model performance, and offer suggestions for improving TCR and TCR-pMHC structure prediction tools.
在诸如AlphaFold等人工智能突破的推动下,预测T细胞受体(TCR)和TCR-肽-主要组织相容性复合体(TCR-pMHC)结构的计算方法迅速发展,使得以越来越高的精度计算这些结构成为可能。尽管这些工具显示出巨大潜力,但由于缺乏标准化基准,它们的相对准确性和局限性仍不明确。在这里,我们系统地评估了七种预测孤立TCR结构的工具以及六种预测TCR-pMHC复合体结构的工具。这些方法包括基于同源性的方法、使用AlphaFold的通用预测工具、源自AlphaFold2的TCR特异性工具以及新开发的tFold-TCR模型。评估使用了一个包含40个αβ TCR和27个TCR-pMHC复合体(21个I类和6个II类)的训练后数据集。使用各种指标在全局、局部和界面水平评估模型准确性。我们发现每个工具在其预测的各个方面都有独特的优势。AlphaFold2、AlphaFold3和tFold-TCR在TCR结构预测的整体准确性方面表现出色,而TCRmodel2和AlphaFold2在TCR-pMHC结构预测的整体准确性方面表现良好。然而,源自AlphaFold2的TCR特异性工具在框架区域的准确性低于基于同源性的方法和诸如AlphaFold等通用工具,并且在对CDR3环、对接方向、TCR-肽界面和II类MHC-肽界面进行建模方面,所有工具都仍然面临挑战。这些发现将指导研究人员选择合适的工具,强调使用多种评估指标评估模型性能的重要性,并为改进TCR和TCR-pMHC结构预测工具提供建议。