Suppr超能文献

经颅超声刺激期间减轻体感混淆的参数优化

Parameter optimisation for mitigating somatosensory confounds during transcranial ultrasonic stimulation.

作者信息

Kop Benjamin R, de Jong Linda, Kim Butts Pauly, den Ouden Hanneke E M, Verhagen Lennart

机构信息

Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, the Netherlands.

Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA.

出版信息

Brain Stimul. 2025 Jul-Aug;18(4):1224-1236. doi: 10.1016/j.brs.2025.06.009. Epub 2025 Jun 11.

Abstract

BACKGROUND

Transcranial ultrasonic stimulation (TUS) redefines what is possible with non-invasive neuromodulation by offering unparalleled spatial precision and flexible targeting capabilities. However, peripheral confounds pose a significant challenge to reliably implementing this technology. While auditory confounds during TUS have been studied extensively, the somatosensory confound has been overlooked thus far. It will become increasingly vital to quantify and manage this confound as the field shifts towards higher doses, more compact stimulation devices, and more frequent stimulation through the temples where co-stimulation is more pronounced.

METHODS

Here, we provide a systematic characterisation of somatosensory co-stimulation during TUS. We also identify the conditions under which this confound can be mitigated most effectively by mapping the confound-parameter space. Specifically, we investigate dose-response effects, pulse shaping characteristics, and transducer-specific parameters.

RESULTS

We demonstrate that somatosensory confounds can be mitigated by avoiding near-field intensity peaks in the scalp, spreading energy across a greater area of the scalp, ramping the pulse envelope, and delivering equivalent doses via longer, lower-intensity pulses rather than shorter, higher-intensity pulses. Additionally, higher pulse repetition frequencies and fundamental frequencies reduce somatosensory effects. Through our systematic mapping of the parameter space, we also find preliminary evidence that particle displacement (strain) may be a primary biophysical driving force behind peripheral somatosensory co-stimulation.

CONCLUSION

This study provides actionable strategies to minimise somatosensory confounds, which will support the thorough experimental control required to unlock the full potential of TUS for scientific research and clinical interventions.

摘要

背景

经颅超声刺激(TUS)通过提供无与伦比的空间精度和灵活的靶向能力,重新定义了无创神经调节的可能性。然而,外周干扰对可靠地应用这项技术构成了重大挑战。虽然TUS期间的听觉干扰已得到广泛研究,但体感干扰至今仍被忽视。随着该领域朝着更高剂量、更紧凑的刺激设备以及通过太阳穴进行更频繁刺激(共刺激更为明显)的方向发展,量化和管理这种干扰将变得越来越重要。

方法

在此,我们对TUS期间的体感共刺激进行了系统表征。我们还通过绘制干扰参数空间,确定了能最有效减轻这种干扰的条件。具体而言,我们研究了剂量反应效应、脉冲整形特性以及换能器特定参数。

结果

我们证明,通过避免头皮近场强度峰值、将能量分散到更大的头皮区域、使脉冲包络线上升以及通过更长、更低强度的脉冲而非更短、更高强度的脉冲传递等效剂量,可以减轻体感干扰。此外,更高的脉冲重复频率和基频可降低体感效应。通过我们对参数空间的系统绘制,我们还发现了初步证据,表明粒子位移(应变)可能是外周体感共刺激背后的主要生物物理驱动力。

结论

本研究提供了可操作的策略,以尽量减少体感干扰,这将有助于实现全面的实验控制,从而释放TUS在科研和临床干预方面的全部潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验