Suppr超能文献

cuteFC:通过一种准确高效的强制调用方法对结构变异进行重新基因分型。

cuteFC: regenotyping structural variants through an accurate and efficient force-calling method.

作者信息

Jiang Tao, Cao Shuqi, Liu Yadong, Zhang Zhendong, Liu Bo, Luo Ruibang, Wang Guohua, Wang Yadong

机构信息

Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.

Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450000, Henan, China.

出版信息

Genome Biol. 2025 Jun 13;26(1):166. doi: 10.1186/s13059-025-03642-2.

Abstract

Long-read sequencing technologies have great potential for the comprehensive discovery of structural variations (SVs). However, accurate genotype assignment for SVs remains challenging due to unavoidable sequencing errors, limited coverage, and the complexity of SVs. Herein, we propose cuteFC, which employs self-adaptive clustering along with a multiallele-aware clustering to achieve accurate SV regenotyping through a force-calling approach. cuteFC also applies a Genome Position Scanner algorithm to improve its application efficiency. Benchmarking evaluations demonstrate that cuteFC outperforms state-of-the-art methods with 2-5% higher F1 scores and constructs a higher-quality genomic atlas with minimal computational resources. cuteFC is available at https://github.com/Meltpinkg/cuteFC and https://zenodo.org/records/14671406 .

摘要

长读长测序技术在全面发现结构变异(SVs)方面具有巨大潜力。然而,由于不可避免的测序错误、有限的覆盖范围以及SVs的复杂性,准确进行SVs的基因型分型仍然具有挑战性。在此,我们提出了cuteFC,它采用自适应聚类以及多等位基因感知聚类,通过强制分型方法实现准确的SV重新基因分型。cuteFC还应用了基因组位置扫描算法来提高其应用效率。基准评估表明,cuteFC的表现优于现有方法,F1分数高出2 - 5%,并以最少的计算资源构建了更高质量的基因组图谱。可在https://github.com/Meltpinkg/cuteFC和https://zenodo.org/records/14671406获取cuteFC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5298/12164092/4f7328ee6b09/13059_2025_3642_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验