Suppr超能文献

用于在被动触摸中跨不同扫描速度进行稳健纹理识别的生物启发式脉冲触觉传感系统。

Bio-Inspired spiking tactile sensing system for robust texture recognition across varying scanning speeds in passive touch.

作者信息

Yavari Fatemeh, Motie Nasrabadi Ali, Nowshiravan Rahatabad Fereidoun, Amiri Mahmood

机构信息

Institute of Medical Science and Technologies, SR.C, Islamic Azad University, Tehran, Iran.

Department of Biomedical Engineering, Faculty of Engineering, Shahed University, Tehran, Iran.

出版信息

Biol Cybern. 2025 Jun 14;119(2-3):14. doi: 10.1007/s00422-025-01012-6.

Abstract

Tactile sensing plays a crucial role in texture recognition, but variations in scanning speed pose a significant challenge for accurate discrimination. Previous studies have demonstrated that scanning speed alters the frequency of texture-induced vibrations, necessitating methods for speed encoding. In this study, we propose a bio-inspired spiking tactile sensing system that integrates mechanoreceptor responses with coincidence detector neurons to encode both texture and velocity without relying on external speed sensors. Our method enables speed and texture recognition in both active and passive touch scenarios by leveraging spike timing information from mechanoreceptors. We evaluated the robustness of our approach by introducing Gaussian noise into the neural encoding process, demonstrating that the model maintains stable accuracy with minimal degradation across different noise levels. The proposed artificial tactile system achieves an impressive 93% accuracy in jointly classifying texture and speed. Compared to prior methods, our model provides a biologically plausible solution to real-world tactile sensing challenges. This research offers a robust framework for texture recognition in prosthetic devices, robotic hands, and autonomous systems operating in unstructured environments.

摘要

触觉传感在纹理识别中起着至关重要的作用,但扫描速度的变化对准确辨别构成了重大挑战。先前的研究表明,扫描速度会改变纹理诱导振动的频率,因此需要速度编码方法。在本研究中,我们提出了一种受生物启发的脉冲触觉传感系统,该系统将机械感受器反应与重合检测神经元相结合,无需依赖外部速度传感器即可对纹理和速度进行编码。我们的方法通过利用来自机械感受器的脉冲时间信息,在主动和被动触摸场景中实现速度和纹理识别。我们通过在神经编码过程中引入高斯噪声来评估我们方法的鲁棒性,结果表明该模型在不同噪声水平下保持稳定的准确性,且精度下降最小。所提出的人工触觉系统在联合分类纹理和速度方面达到了令人印象深刻的93%的准确率。与先前的方法相比,我们的模型为现实世界的触觉传感挑战提供了一种生物学上合理的解决方案。这项研究为在非结构化环境中运行的假肢设备、机器人手和自主系统中的纹理识别提供了一个强大的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验