Peng Qianni, Weerapana Eranthie
Department of Chemistry, Boston College, Chestnut Hill, MA, USA.
Methods Mol Biol. 2025;2921:73-91. doi: 10.1007/978-1-0716-4502-4_4.
The nuclear proteome encompasses diverse proteins that regulate critical cellular functions, including histone modifications, chromatin structure, and transcription. Mutations to many of these nuclear proteins correlate with the onset of diseases such as cancer. Due to the disease relevance of nuclear proteins, drug development efforts have focused on identifying small-molecule modulators of nuclear protein function. Covalent ligands provide a promising strategy to therapeutically target nuclear proteins that lack distinct substrate binding pockets. In particular, chemoproteomic strategies have enabled the identification of ligandable sites within the proteome, with a particular emphasis on covalent targeting of cysteine residues. Nuclear proteins are typically poorly represented in chemoproteomic workflows that utilize whole-cell lysates due to the low abundance of these proteins and the localization of nuclear proteins in multiple cellular compartments. To specifically focus on the nuclear proteome, we coupled proximity labeling using a histone-TurboID construct with chemoproteomics. Notably, this platform can be utilized to identify ligandable sites within the nuclear proteome, and monitor changes in nuclear localization and chromatin association upon exposure to covalent ligands. Here, we describe the steps required to generate histone-TurboID expressing cell lines, and apply tandem mass tag (TMT)-based quantitative proteomics to monitor protein localization changes induced by covalent ligands. Together, this methodology provides a streamlined approach toward identifying covalent ligands that regulate nuclear protein function.
核蛋白质组包含多种调节关键细胞功能的蛋白质,包括组蛋白修饰、染色质结构和转录。许多这些核蛋白的突变与癌症等疾病的发生相关。由于核蛋白与疾病的相关性,药物研发工作一直专注于识别核蛋白功能的小分子调节剂。共价配体为治疗性靶向缺乏独特底物结合口袋的核蛋白提供了一种有前景的策略。特别是,化学蛋白质组学策略能够识别蛋白质组中的可配体位点,尤其侧重于对半胱氨酸残基的共价靶向。由于这些蛋白质丰度低且核蛋白定位于多个细胞区室,在利用全细胞裂解物的化学蛋白质组学工作流程中,核蛋白的代表性通常较差。为了专门聚焦于核蛋白质组,我们将使用组蛋白-TurboID构建体的邻近标记与化学蛋白质组学相结合。值得注意的是,该平台可用于识别核蛋白质组中的可配体位点,并监测暴露于共价配体后核定位和染色质结合的变化。在这里,我们描述了生成表达组蛋白-TurboID的细胞系所需的步骤,并应用基于串联质量标签(TMT)的定量蛋白质组学来监测共价配体诱导的蛋白质定位变化。总之,这种方法为识别调节核蛋白功能的共价配体提供了一种简化的途径。