Han Jimin, Noh Taeyun, Jeong Boyoung, Chung Peter Hayoung, Park Garam, Lee Min-Hyun, Kim Yumin, Yoon Tae-Sik
Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
ACS Appl Mater Interfaces. 2025 Jun 25;17(25):36866-36879. doi: 10.1021/acsami.5c04214. Epub 2025 Jun 15.
Enhanced nonvolatile memory and artificial synapse characteristics are achieved in oxygen ion-based ECRAM consisting of a low-temperature atomic layer-deposited (ALD) oxygen-deficient hafnium oxide (HfO) ion-exchange layer and zinc oxide (ZnO) channel layer. The drain current modulation of the device reaches a few orders of magnitude upon application of positive programming and negative erasing gate bias. Also, the device exhibits nonvolatile retention of modulated current up to >10 higher than the initial value for 24 h. Nonvolatile modulation of channel conductance results from oxygen ion exchange between the HfO ion-exchange layer and ZnO channel layer in the nanometer scale, facilitated by using oxygen-deficient HfO deposited at a low temperature (LT-HfO) and ZnO layers as well as the use of UV/ozone treatment on LT-HfO. Additionally, it presents various synaptic characteristics including analog, linear, and symmetric potentiation and depression behaviors upon repeating >10 pulses, paired-pulse facilitation depending on the pulse number, amplitude, and width, and short-term and long-term plasticity. These synapse characteristics are benchmarked to have MNIST pattern recognition accuracy over 93% using a CrossSim simulator. These enhanced nonvolatile memory and artificial synaptic characteristics verify the potential application of the proposed ECRAM for high-density stand-alone nonvolatile memory and artificial synapses for brain-inspired neuromorphic computing systems.
在由低温原子层沉积(ALD)的缺氧氧化铪(HfO)离子交换层和氧化锌(ZnO)沟道层组成的基于氧离子的电化学随机存取存储器(ECRAM)中,实现了增强的非易失性存储器和人工突触特性。在施加正向编程和负向擦除栅极偏压时,该器件的漏极电流调制达到几个数量级。此外,该器件在24小时内表现出调制电流的非易失性保持,其值比初始值高>10倍。沟道电导的非易失性调制源于纳米尺度下HfO离子交换层与ZnO沟道层之间的氧离子交换,这通过使用低温沉积的缺氧HfO(LT-HfO)和ZnO层以及对LT-HfO进行紫外/臭氧处理来实现。此外,在重复>10个脉冲时,它呈现出各种突触特性,包括模拟、线性和对称的增强和抑制行为、取决于脉冲数量、幅度和宽度的双脉冲易化以及短期和长期可塑性。使用CrossSim模拟器对这些突触特性进行基准测试,其在MNIST模式识别中的准确率超过93%。这些增强的非易失性存储器和人工突触特性验证了所提出的ECRAM在高密度独立非易失性存储器和用于受脑启发的神经形态计算系统的人工突触方面的潜在应用。