Suppr超能文献

用于预测氯化过程中消毒副产物形成的机器学习算法性能分析:原水水质特征的影响

Performance analysis of machine learning algorithms for the prediction of disinfection byproducts formation during chlorination: Effect of background water characteristics.

作者信息

Ersan Gamze, Goz Eda, Karanfil Tanju

机构信息

School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-5306, USA.

Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA; Chemical Engineering Department, Engineering Faculty, Ankara University, Ankara, 06100, Turkey.

出版信息

J Environ Manage. 2025 Aug;389:126144. doi: 10.1016/j.jenvman.2025.126144. Epub 2025 Jun 14.

Abstract

This study investigated the comparison of the nonlinear machine learning algorithms and linear regression models to predict the formation of trihalomethanes (THM4), haloacetic acids (HAA5 and HAA9), and haloacetonitriles (HAN4 and HAN6) under uniform formation conditions in chlorinated waters. A wide range of water sources including wastewater effluent organic matters (EfOM), laboratory grown algal organic matters (AOM) samples from different algal species, and raw/treated/isolated natural organic matter (NOM) samples were selected to investigate background water effect on the model performance. Models for THM4, HAA5, HAA9, HAN4 and HAN6 formation were developed for all water sources combined (including NOM, AOM, and EfOM-impacted waters) and for NOM separately. The results showed that Least squares support vector machine (LS-SVM) delivered the best performance for both regulated THM (R/R: 0.92/0.80) and HAA5 (R/R: 0.91/0.72), while Kernel extreme learning machine (KELM) outperformed the other models for unregulated HAN4 (R/R: 0.89/0.70) and HAN6 (R/R: 0.91/0.41), across all water sources. For individual NOM waters, the Artificial neural network (ANN) model outperformed in predicting THMs (R/R: 0.97/0.94), HAA9 (R/R: 0.92/0.84), HAN4 (R/R: 0.98/0.96), and HAN6 (R/R: 0.98/0.89), emphasizing its ability to generalize across narrower, more specific datasets. This suggests that while LS-SVM and KELM models are more effective for both regulated and unregulated disinfection byproducts (DBPs) modeling as the variability in water source characteristics increases, the ANN model excels for more homogeneous DBP precursor types. These findings indicate the importance of selecting the appropriate modeling approach and the characteristics of the datasets for DBP modeling.

摘要

本研究调查了非线性机器学习算法和线性回归模型在预测氯化水中均匀生成条件下三卤甲烷(THM4)、卤乙酸(HAA5和HAA9)以及卤乙腈(HAN4和HAN6)生成情况方面的比较。选取了多种水源,包括废水排放有机物(EfOM)、来自不同藻类物种的实验室培养藻类有机物(AOM)样本以及原水/处理后/分离出的天然有机物(NOM)样本,以研究背景水对模型性能的影响。针对所有合并的水源(包括NOM、AOM和受EfOM影响的水)以及单独的NOM,分别建立了THM4、HAA5、HAA9、HAN4和HAN6生成的模型。结果表明,在所有水源中,最小二乘支持向量机(LS - SVM)在预测受监管的THM(R/R:0.92/0.80)和HAA5(R/R:0.91/0.72)方面表现最佳,而核极限学习机(KELM)在预测不受监管的HAN4(R/R:0.89/0.70)和HAN6(R/R:0.91/0.41)方面优于其他模型。对于单个NOM水源,人工神经网络(ANN)模型在预测THMs(R/R:0.97/0.94)、HAA9(R/R:0.92/0.84)、HAN4(R/R:0.98/0.96)和HAN6(R/R:0.98/0.89)方面表现出色,强调了其在更狭窄、更特定数据集上的泛化能力。这表明,随着水源特征变异性的增加,LS - SVM和KELM模型在受监管和不受监管的消毒副产物(DBP)建模方面更有效,而ANN模型在更均匀的DBP前体类型方面表现出色。这些发现表明了为DBP建模选择合适的建模方法和数据集特征的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验