铁与硒:少突胶质细胞发育与死亡的十字路口

Iron and selenium: At the crossroads of development and death in oligodendrocytes.

作者信息

Ma Chi, Wurlitzer Karlin, Nunes Lance G A, Hoffmann Peter R, Pitts Matthew W

机构信息

Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA.

Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA.

出版信息

Arch Biochem Biophys. 2025 Sep;771:110509. doi: 10.1016/j.abb.2025.110509. Epub 2025 Jun 13.

Abstract

Myelination is a critical neurodevelopmental process where nerve fibers are encased with the lipid-rich, insulating substance known as myelin. It is essential for proper function of the nervous system, as myelin enhances the fidelity and speed of nerve conduction, while also providing a protective barrier. The early postnatal period represents the most rapid phase of myelination, where numbers of mature oligodendrocytes peak. Oligodendrocyte maturation is an energetically demanding process that involves increased iron uptake, heightened metabolism, and elevated production of antioxidants. It is critically dependent upon thyroid hormone signaling and increased synthesis of plasmenyl-phosphatidylethanolamine (PE; aka plasmalogen), a subclass of phospholipids that is particularly abundant in the brain. Plasmenyl-PE is characterized by a vinyl-ether bond that preferentially reacts with oxidants, thereby protecting against lipid peroxidation. Notably, thyroid hormone metabolism and plasmenyl-PE synthesis both require selenoproteins, a clade of proteins containing the 21st amino acid, selenocysteine. Selenoproteins also constitute key regulators of redox tone, with glutathione peroxidase 4 recognized as the master regulator of ferroptosis, a non-apoptotic form of cell death characterized by iron-dependent lipid peroxidation. This review aims to illuminate the delicate balance between iron homeostasis, lipid metabolism, thyroid hormone signaling, and selenoprotein synthesis in oligodendrocytes. This interconnected relationship is of paramount importance for neurodevelopment, as mutations in many genes mediating these processes converge on a phenotype characterized by hypomyelination, cognitive impairment, neurodegeneration, and motor deficits.

摘要

髓鞘形成是一个关键的神经发育过程,在此过程中神经纤维被富含脂质的绝缘物质髓磷脂包裹。它对于神经系统的正常功能至关重要,因为髓磷脂可提高神经传导的保真度和速度,同时还提供一个保护屏障。出生后早期是髓鞘形成最迅速的阶段,此时成熟少突胶质细胞的数量达到峰值。少突胶质细胞成熟是一个能量需求很高的过程,涉及铁摄取增加、新陈代谢增强以及抗氧化剂产量提高。它严重依赖于甲状腺激素信号传导以及血浆磷脂酰乙醇胺(PE;又称缩醛磷脂)合成增加,血浆磷脂酰乙醇胺是一类在大脑中特别丰富的磷脂亚类。血浆磷脂酰乙醇胺的特征是具有一个乙烯基醚键,该键优先与氧化剂反应,从而防止脂质过氧化。值得注意的是,甲状腺激素代谢和血浆磷脂酰乙醇胺合成均需要硒蛋白,硒蛋白是一类包含第21种氨基酸硒代半胱氨酸的蛋白质。硒蛋白也是氧化还原状态的关键调节因子,谷胱甘肽过氧化物酶4被认为是铁死亡的主要调节因子,铁死亡是一种非凋亡形式的细胞死亡,其特征是铁依赖性脂质过氧化。本综述旨在阐明少突胶质细胞中铁稳态、脂质代谢、甲状腺激素信号传导和硒蛋白合成之间的微妙平衡。这种相互关联的关系对于神经发育至关重要,因为许多介导这些过程的基因突变都集中在以髓鞘形成不足、认知障碍、神经退行性变和运动缺陷为特征的表型上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索