Liu Tingting, Li Jingwen, Yang Zhengjia, Wei Jianshe
Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China.
Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng 475004, China.
Ageing Res Rev. 2025 Aug;110:102804. doi: 10.1016/j.arr.2025.102804. Epub 2025 Jun 13.
Parkinson's disease (PD), the second most prevalent neurodegenerative disorder globally, is pathologically characterized by progressive degeneration of dopaminergic neurons in the substantia nigra (SN). Current therapeutic strategies primarily alleviate clinical symptoms but lack efficacy in halting or reversing neurodegeneration. Recent studies have highlighted the FGF21-ACE2 signaling axis-a synergistic interaction between fibroblast growth factor 21 (FGF21) and angiotensin-converting enzyme 2 (ACE2)-as an emerging therapeutic target in PD due to its tripartite roles in neuroprotection, anti-inflammatory modulation, and metabolic homeostasis. Mechanistically, FGF21 activates neuroprotective pathways including phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and the extracellular signal-regulated kinase (ERK)1/2, suppressing apoptotic cascades, amplifying antioxidant defenses, and stimulating dopaminergic neuron differentiation. Conversely, ACE2 counterbalances neurotoxicity by converting angiotensin II (Ang II) to angiotensin-(1-7) [Ang-(1-7)], thereby mitigating neuroinflammation and oxidative stress. Their coordinated activity potently inhibits M1 microglial activation, downregulates pro-inflammatory cytokines (e.g., TNF-α), and bolsters astrocytic antioxidant responses while preserving metabolic equilibrium. Notably, this axis ameliorates mitochondrial dysfunction and attenuates α-synuclein (α-syn) aggregationvia modulation of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling networks, collectively decelerating PD pathogenesis. Therapeutic interventions such as small-molecule agonists (e.g., diminazene aceturate, DIZE) and CRISPR-Cas9-mediated gene editing show potential to upregulate FGF21-ACE2 activity, while non-pharmacological approaches including exercise and ketogenic diets may synergistically enhance pathway efficacy. However, translational hurdles persist, including limited blood-brain barrier (BBB) permeability of therapeutics, off-target effects, and insufficient clinical validation. Future directions should prioritize deciphering dynamic molecular crosstalk within this pathway, engineering BBB-penetrant nanocarriers for targeted delivery, and conducting large-scale randomized controlled trials. This review underscores the FGF21-ACE2 axis as a multi-mechanistic therapeutic paradigm for PD, with its capacity for simultaneous modulation of neurodegeneration, inflammation, and metabolism positioning it as a superior candidate to conventional single-target therapies in achieving disease modification.
帕金森病(PD)是全球第二常见的神经退行性疾病,其病理特征是黑质(SN)中多巴胺能神经元的进行性退化。目前的治疗策略主要是缓解临床症状,但在阻止或逆转神经退行性变方面缺乏疗效。最近的研究强调了成纤维细胞生长因子21(FGF21)-血管紧张素转换酶2(ACE2)信号轴——成纤维细胞生长因子21(FGF21)和血管紧张素转换酶2(ACE2)之间的协同相互作用——作为PD中一个新兴的治疗靶点,因为它在神经保护、抗炎调节和代谢稳态中具有三重作用。从机制上讲,FGF21激活包括磷脂酰肌醇3激酶(PI3K)/蛋白激酶B(AKT)和细胞外信号调节激酶(ERK)1/2在内的神经保护途径,抑制凋亡级联反应,增强抗氧化防御,并刺激多巴胺能神经元分化。相反,ACE2通过将血管紧张素II(Ang II)转化为血管紧张素-(1-7)[Ang-(1-7)]来平衡神经毒性,从而减轻神经炎症和氧化应激。它们的协同活动有力地抑制M1小胶质细胞活化,下调促炎细胞因子(如肿瘤坏死因子-α),并增强星形胶质细胞的抗氧化反应,同时维持代谢平衡。值得注意的是,该信号轴通过调节丝裂原活化蛋白激酶(MAPK)和核因子-κB(NF-κB)信号网络改善线粒体功能障碍并减轻α-突触核蛋白(α-syn)聚集,共同延缓PD发病机制。小分子激动剂(如乙酰氧苯脒,DIZE)和CRISPR-Cas9介导的基因编辑等治疗干预措施显示出上调FGF21-ACE2活性的潜力,而包括运动和生酮饮食在内的非药物方法可能协同增强该信号轴的疗效。然而,转化障碍仍然存在,包括治疗药物的血脑屏障(BBB)通透性有限、脱靶效应和临床验证不足。未来的方向应该优先解读该信号轴内动态的分子串扰,设计用于靶向递送的BBB穿透性纳米载体,并进行大规模随机对照试验。本综述强调FGF21-ACE2信号轴作为PD的一种多机制治疗模式,其同时调节神经退行性变、炎症和代谢的能力使其在实现疾病修饰方面成为优于传统单靶点疗法的候选者。