Manfredi Matteo, Savojardo Castrense, Martelli Pier Luigi, Casadio Rita
Biocomputing Group, Dept. of Pharmacy and Biotechnology, University of Bologna, Italy.
Biocomputing Group, AlmaClimate Interdepartmental Center, University of Bologna, Italy.
Curr Res Struct Biol. 2025 May 22;9:100167. doi: 10.1016/j.crstbi.2025.100167. eCollection 2025 Jun.
The human reference proteome is routinely modelled with predictive tools such as AlphaFold2. We recently released a database in which, for each human protein, the AlphaFold2 model is paired with its ESMFold counterpart. The two predictive methods take advantage of different procedures and it is interesting to compare them in relation to their quality, particularly when an experimental protein structure is not available. Here, we select three state-of-the-art quality assessment methods and we adopt them to compare 42,942 pairs of models. This procedure helps to find the most reliable models for human proteins, particularly for the set of proteins for which structure prediction methods give dissimilar results. We obtain that when predicted structures are similar, AlphaFold2 models consistently receive higher scores than the ESMFold counterparts. When predicted structures differ, the ESMFold model is the best choice for 49 % of the proteins according to a consensus of the three QA tools.
人类参考蛋白质组通常使用诸如AlphaFold2之类的预测工具进行建模。我们最近发布了一个数据库,其中针对每个人类蛋白质,将AlphaFold2模型与其ESMFold对应模型配对。这两种预测方法利用了不同的程序,比较它们的质量很有趣,特别是在没有实验性蛋白质结构的情况下。在这里,我们选择了三种最先进的质量评估方法,并采用它们来比较42942对模型。这个过程有助于找到人类蛋白质最可靠的模型,特别是对于那些结构预测方法给出不同结果的蛋白质组。我们发现,当预测结构相似时,AlphaFold2模型始终比ESMFold对应模型获得更高的分数。当预测结构不同时,根据三种质量评估工具的共识,ESMFold模型是49%的蛋白质的最佳选择。
Curr Res Struct Biol. 2025-5-22
Comput Struct Biotechnol J. 2025-1-14
Bioinformatics. 2023-1-1
Channels (Austin). 2024-12
Brief Bioinform. 2023-3-19
J Mol Biol. 2024-9-1
Brief Bioinform. 2023-3-19
Nucleic Acids Res. 2023-1-6
Nat Comput Sci. 2021-7