文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人类参考蛋白质组结构模型的评估:AlphaFold2与ESMFold对比

Evaluation of the structural models of the human reference proteome: AlphaFold2 versus ESMFold.

作者信息

Manfredi Matteo, Savojardo Castrense, Martelli Pier Luigi, Casadio Rita

机构信息

Biocomputing Group, Dept. of Pharmacy and Biotechnology, University of Bologna, Italy.

Biocomputing Group, AlmaClimate Interdepartmental Center, University of Bologna, Italy.

出版信息

Curr Res Struct Biol. 2025 May 22;9:100167. doi: 10.1016/j.crstbi.2025.100167. eCollection 2025 Jun.


DOI:10.1016/j.crstbi.2025.100167
PMID:40520120
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12166363/
Abstract

The human reference proteome is routinely modelled with predictive tools such as AlphaFold2. We recently released a database in which, for each human protein, the AlphaFold2 model is paired with its ESMFold counterpart. The two predictive methods take advantage of different procedures and it is interesting to compare them in relation to their quality, particularly when an experimental protein structure is not available. Here, we select three state-of-the-art quality assessment methods and we adopt them to compare 42,942 pairs of models. This procedure helps to find the most reliable models for human proteins, particularly for the set of proteins for which structure prediction methods give dissimilar results. We obtain that when predicted structures are similar, AlphaFold2 models consistently receive higher scores than the ESMFold counterparts. When predicted structures differ, the ESMFold model is the best choice for 49 % of the proteins according to a consensus of the three QA tools.

摘要

人类参考蛋白质组通常使用诸如AlphaFold2之类的预测工具进行建模。我们最近发布了一个数据库,其中针对每个人类蛋白质,将AlphaFold2模型与其ESMFold对应模型配对。这两种预测方法利用了不同的程序,比较它们的质量很有趣,特别是在没有实验性蛋白质结构的情况下。在这里,我们选择了三种最先进的质量评估方法,并采用它们来比较42942对模型。这个过程有助于找到人类蛋白质最可靠的模型,特别是对于那些结构预测方法给出不同结果的蛋白质组。我们发现,当预测结构相似时,AlphaFold2模型始终比ESMFold对应模型获得更高的分数。当预测结构不同时,根据三种质量评估工具的共识,ESMFold模型是49%的蛋白质的最佳选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3149/12166363/077f6cce6d5a/mmcfigs2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3149/12166363/95de7f9bb166/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3149/12166363/5b6fdd1bc8d7/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3149/12166363/87495793f4ea/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3149/12166363/dfa8e47e5ab0/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3149/12166363/524eb1f15522/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3149/12166363/8b044fdf9608/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3149/12166363/22dd714d09ac/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3149/12166363/15684a6155a6/mmcfigs1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3149/12166363/077f6cce6d5a/mmcfigs2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3149/12166363/95de7f9bb166/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3149/12166363/5b6fdd1bc8d7/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3149/12166363/87495793f4ea/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3149/12166363/dfa8e47e5ab0/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3149/12166363/524eb1f15522/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3149/12166363/8b044fdf9608/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3149/12166363/22dd714d09ac/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3149/12166363/15684a6155a6/mmcfigs1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3149/12166363/077f6cce6d5a/mmcfigs2.jpg

相似文献

[1]
Evaluation of the structural models of the human reference proteome: AlphaFold2 versus ESMFold.

Curr Res Struct Biol. 2025-5-22

[2]
Alpha&ESMhFolds: A Web Server for Comparing AlphaFold2 and ESMFold Models of the Human Reference Proteome.

J Mol Biol. 2024-9-1

[3]
AlphaFold2 and ESMFold: A large-scale pairwise model comparison of human enzymes upon Pfam functional annotation.

Comput Struct Biotechnol J. 2025-1-14

[4]
3D-equivariant graph neural networks for protein model quality assessment.

Bioinformatics. 2023-1-1

[5]
Structural modeling of ion channels using AlphaFold2, RoseTTAFold2, and ESMFold.

Channels (Austin). 2024-12

[6]
AI-assisted structural consensus-proteome prediction of human monkeypox viruses isolated within a year after the 2022 multi-country outbreak.

Microbiol Spectr. 2023-12-12

[7]
Exploring the Druggable Conformational Space of Protein Kinases Using AI-Generated Structures.

bioRxiv. 2023-9-2

[8]
High-accuracy protein model quality assessment using attention graph neural networks.

Brief Bioinform. 2023-3-19

[9]
Validation of de novo designed water-soluble and transmembrane β-barrels by in silico folding and melting.

Protein Sci. 2024-7

[10]
Predicting residue-specific qualities of individual protein models using residual neural networks and graph neural networks.

Proteins. 2022-12

本文引用的文献

[1]
ModFOLD9: A Web Server for Independent Estimates of 3D Protein Model Quality.

J Mol Biol. 2024-9-1

[2]
Alpha&ESMhFolds: A Web Server for Comparing AlphaFold2 and ESMFold Models of the Human Reference Proteome.

J Mol Biol. 2024-9-1

[3]
Critical assessment of methods of protein structure prediction (CASP)-Round XV.

Proteins. 2023-12

[4]
Evolutionary-scale prediction of atomic-level protein structure with a language model.

Science. 2023-3-17

[5]
High-accuracy protein model quality assessment using attention graph neural networks.

Brief Bioinform. 2023-3-19

[6]
UniProt: the Universal Protein Knowledgebase in 2023.

Nucleic Acids Res. 2023-1-6

[7]
Fast and effective protein model refinement using deep graph neural networks.

Nat Comput Sci. 2021-7

[8]
Critical assessment of methods of protein structure prediction (CASP)-Round XIV.

Proteins. 2021-12

[9]
Highly accurate protein structure prediction with AlphaFold.

Nature. 2021-8

[10]
Improved protein structure refinement guided by deep learning based accuracy estimation.

Nat Commun. 2021-2-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索