Suppr超能文献

用于生物医学和行为健康诊断的人工智能驱动的多模态比色分析

AI-driven multimodal colorimetric analytics for biomedical and behavioral health diagnostics.

作者信息

Hagos Desta Haileselassie, Aryal Saurav Keshari, Ymele-Leki Patrick, Burge Legand L

机构信息

Howard University, Department of Electrical Engineering and Computer Science, 2400 Sixth Street NW, Washington DC, 20059, DC, USA.

Howard University, Department of Chemical Engineering, 2400 Sixth Street NW, Washington DC, 20059, DC, USA.

出版信息

Comput Struct Biotechnol J. 2025 May 28;27:2219-2232. doi: 10.1016/j.csbj.2025.05.015. eCollection 2025.

Abstract

The exponential growth of multi-scale biomedical and behavioral data introduces both challenges and opportunities for Image 1-driven analytics. Effectively managing the complexity and variability of these data sources requires advanced computational techniques for accurate interpretation and robust decision-making. Integrating Image 2 with colorimetric biosensing and multimodal data fusion offers scalable solutions that can improve diagnostic accuracy, enable early disease detection, and support personalized medicine. This work explores mobile-based colorimetry, an Image 3-driven approach that uses image processing and Image 4 to detect colorimetric changes in chemical and biological solutions. We propose a modular conceptual framework that integrates mobile-based colorimetry with multimodal biomedical data, such as clinical, imaging, and environmental datasets, to develop scalable, low-cost tools for predictive modeling, real-time health monitoring, and personalized diagnostics. We review recent advancements in Image 5-enabled colorimetric analysis and multimodal data fusion for healthcare applications, emphasizing innovations in Image 6-assisted biosensors, Image 7-driven biomedical imaging, and multimodal fusion techniques. In addition, we highlight the need for robust data management systems and interpretable AI/ML models to ensure security, privacy, and reliability in biomedical and behavioral research. This work also highlights practical directions for improving diagnostic accuracy and accessibility, particularly in resource-limited settings.

摘要

多尺度生物医学和行为数据的指数级增长给图像1驱动的分析带来了挑战和机遇。有效管理这些数据源的复杂性和变异性需要先进的计算技术来进行准确的解释和稳健的决策。将图像2与比色生物传感和多模态数据融合相结合,提供了可扩展的解决方案,可提高诊断准确性、实现疾病早期检测并支持个性化医疗。这项工作探索了基于移动设备的心比色法,这是一种由图像3驱动的方法,利用图像处理和图像4来检测化学和生物溶液中的比色变化。我们提出了一个模块化概念框架,将基于移动设备的心比色法与多模态生物医学数据(如临床、成像和环境数据集)相结合,以开发用于预测建模、实时健康监测和个性化诊断的可扩展、低成本工具。我们回顾了用于医疗保健应用的图像5启用的比色分析和多模态数据融合的最新进展,强调了图像6辅助生物传感器、图像7驱动的生物医学成像和多模态融合技术方面的创新。此外,我们强调需要强大的数据管理系统和可解释的人工智能/机器学习模型,以确保生物医学和行为研究中的安全性、隐私性和可靠性。这项工作还突出了提高诊断准确性和可及性的实际方向,特别是在资源有限的环境中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a32/12166737/d19800537b72/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验