Suppr超能文献

控制RfaH折叠转换的关键结构域间残基的计算和实验评估。

Computational and experimental assessment of key interdomain residues controlling the fold-switch of RfaH.

作者信息

Tabilo-Agurto Cyndi, Reyes Javiera, Artsimovitch Irina, Ramírez-Sarmiento César A

机构信息

Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.

ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile.

出版信息

Protein Sci. 2025 Jul;34(7):e70202. doi: 10.1002/pro.70202.

Abstract

Escherichia coli RfaH, a member of the universally conserved NusG family of transcription factors, regulates its function by undergoing a structural rearrangement of its C-terminal domain (CTD) upon recruitment to RNA polymerase (RNAP) paused at the DNA signal known as operon polarity suppressor (ops) element. While it is known that the fold-switch of RfaH CTD from an α-helical hairpin (autoinhibited state) into a β-barrel (active state) is controlled by interactions between the N-terminal domain (NTD) and CTD, which are broken apart upon NTD binding to RNAP, a comprehensive analysis of residues that stabilize the autoinhibited state is lacking. Here, we utilize a combination of molecular dynamics (MD), protein structure prediction, and in vivo functional assays as a workflow to determine key interdomain (ID) residues controlling the fold-switch of RfaH. First, MD simulations employing structure-based models identified eight CTD residues with high ID contact probability, therefore expected to play a crucial role in stabilizing the autoinhibited state of RfaH. In silico alanine scanning mutagenesis followed by structure prediction using AlphaFold2 showed that four of these mutants (F126A, E136A, R138A, and L142A) led to several models with mixed α/β secondary structure for the CTD in comparison to the known fold-switching mutant E48A. Lastly, experimental alanine scanning mutagenesis and RfaH-dependent in vivo luminescence assays confirmed that I129 and L142 contribute to the stabilization of the autoinhibited state. These results deepen our understanding of the fold-switch of RfaH, with tools that are applicable to other metamorphic proteins.

摘要

大肠杆菌RfaH是普遍保守的NusG转录因子家族的成员,它通过在被招募到停顿在被称为操纵子极性抑制子(ops)元件的DNA信号处的RNA聚合酶(RNAP)上时,其C端结构域(CTD)发生结构重排来调节其功能。虽然已知RfaH CTD从α-螺旋发夹结构(自抑制状态)转变为β-桶状结构(活性状态)的折叠转换受N端结构域(NTD)和CTD之间相互作用的控制,当NTD与RNAP结合时这种相互作用会被破坏,但缺乏对稳定自抑制状态的残基的全面分析。在这里,我们利用分子动力学(MD)、蛋白质结构预测和体内功能测定相结合的方法作为工作流程,来确定控制RfaH折叠转换的关键结构域间(ID)残基。首先,使用基于结构的模型进行的MD模拟确定了八个具有高ID接触概率的CTD残基,因此预计它们在稳定RfaH的自抑制状态中起关键作用。通过计算机丙氨酸扫描诱变,随后使用AlphaFold2进行结构预测,结果表明,与已知的折叠转换突变体E48A相比,其中四个突变体(F126A、E136A、R138A和L142A)导致CTD出现了几种具有混合α/β二级结构的模型。最后,实验性丙氨酸扫描诱变和依赖RfaH的体内发光测定证实,I129和L142有助于自抑制状态的稳定。这些结果加深了我们对RfaH折叠转换的理解,所使用的工具也适用于其他变质蛋白。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50df/12168481/fc5c139bfaf5/PRO-34-e70202-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验