He Tao, Rehan Muhammad, Sun Linhe, Tang Jiuxing, Li Denghui, Chen Lulin, Chen Lingling, To Suet, Yip Wai Sze
State Key Laboratory of Ultra-precision Machining Technology, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
PLoS One. 2025 Jun 16;20(6):e0326046. doi: 10.1371/journal.pone.0326046. eCollection 2025.
Ultra-precision machining (UPM) is crucial for producing parts with functional surfaces featuring nano textures, yet it faces challenges in generating such textures. This paper explores the potential of magnetic field-assisted UPM to overcome these challenges by leveraging magnetophoresis to generate nanotextures and thoroughly investigating the importance of cutting velocity on magnetophoresis in diamond cutting. Experimental results from cutting force, surface profile, surface topography, and atomic force microscopy images demonstrate that magnetic fields enable nanotexture generation on aluminum alloys surfaces in diamond cutting. Also, increasing cutting speed in diamond cutting under a magnetic field enhances magnetophoresis. This study highlights the advantages of integrating magnetophoresis for advanced nanotexture fabrication in UPM and emphasizes strategies for control cutting speed to achieve nanotextures.
超精密加工(UPM)对于制造具有纳米纹理功能表面的零件至关重要,但在生成此类纹理方面面临挑战。本文探讨了磁场辅助超精密加工通过利用磁泳来生成纳米纹理并深入研究切削速度对金刚石切削中磁泳的重要性来克服这些挑战的潜力。切削力、表面轮廓、表面形貌和原子力显微镜图像的实验结果表明,磁场能够在金刚石切削中在铝合金表面生成纳米纹理。此外,在磁场作用下金刚石切削中提高切削速度会增强磁泳。本研究突出了在超精密加工中整合磁泳以进行先进纳米纹理制造的优势,并强调了控制切削速度以实现纳米纹理的策略。