Greiner Stefan, Denard Patrick J, Metcalfe Nick, Thakur Siddhant, Knopf David, Werner Brian C
Department of Shoulder and Elbow Surgery, Sporthopaedicum Regensburg, Regensburg, Germany; Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany.
Department of Shoulder Surgery, Oregon Shoulder Institute, Medford, OR, USA.
J Shoulder Elbow Surg. 2025 Jun 14. doi: 10.1016/j.jse.2025.05.008.
Impingement-free range of motion (ROM) after reverse shoulder arthroplasty (rTSA) may depend on implant position and scapula anatomic parameters. The critical shoulder angle (CSA) is influenced by a combination of scapula parameters. The aim of this study was to evaluate whether the CSA has an influence on impingement-free ROM after rTSA in a virtual simulation using a Statistical Shape Model.
100 scapulae chosen from a database of 10,000 scapulae were used to generate a Statistical Shape Model. Modes corresponding to anatomical characteristics (size, CSA etc.) were defined. Five CSA models were obtained including a mean and 2 standard deviations (SDs) (CSA 32° [-2 SD], CSA 30° [-1 SD], CSA 27° [mean], CSA 25° [+1 SD], and CSA 23° [+2 SD]). A 39-mm glenosphere was virtually implanted in each model. The humeral side was kept consistent with the simulation of a 135° neck-shaft-angle component (Univers Revers, Arthrex Inc., Naples, FL, USA). Glenoid positioning parameters included (1) lateral offset (0-10 mm in 2-mm increments), (2) inferior offset (0, 2.5, 5, 7.5 mm), and (3) posterior offset (0, 2.5, 5 mm). External rotation (ER) at 0° and 60° of abduction and internal rotation (IR) at 60° of abduction were then analyzed for the different positioning parameters (inferior, posterior, and lateral offset) and the combination of 0 mm inferior and 2.5 posterior offset and lateralization from 0-10 mm, 2.5 mm inferior and 0 mm of posterior offset and lateralization (0-10 mm), and the combination of 2.5 mm inferior and 2.5 mm posterior offset and lateralization (0-10 mm).
Lower CSA models showed higher ER 0° values (eg, 435% increase from CSA 32° to CSA 23° at 0 mm lateral, inferior, and posterior offset), while models with greater CSAs showed higher IR 60° values (eg, 505% increase from CSA SD 23° to CSA SD 32° at 0 mm lateral, inferior, and posterior offset). By lateralizing, ROM increased in all CSA models (eg, 884% increase from 0 mm to 10 mm lateralization for CSA 32° for ER 0°). Posterior positioning of 2.5 and 5 mm improved ER not IR. Maximal IR at 60° was achieved with no posterior, 2.5 mm of inferior offset, and lateralization between 2-6 mm according to the evaluated CSA.
Specific CSA ranges require particular implant positioning strategies to optimize impingement-free ROM in rTSA. To achieve the maximal ROM combination of IR and ER in this simulation, 2.5 mm of inferior offset with no posterior offset and lateralization of 4 mm for CSA ≥30° and 6 mm for CSA SD ≤25° was required.
反肩关节置换术(rTSA)后无撞击活动范围(ROM)可能取决于植入物位置和肩胛骨解剖参数。关键肩角(CSA)受肩胛骨参数组合的影响。本研究的目的是在使用统计形状模型的虚拟模拟中评估CSA对rTSA后无撞击ROM是否有影响。
从10000个肩胛骨数据库中选取100个肩胛骨用于生成统计形状模型。定义了与解剖特征(大小、CSA等)相对应的模式。获得了五个CSA模型,包括一个均值和两个标准差(SD)(CSA 32°[-2 SD]、CSA 30°[-1 SD]、CSA 27°[均值]、CSA 25°[+1 SD]和CSA 23°[+2 SD])。在每个模型中虚拟植入一个39毫米的球窝关节头。肱骨侧保持与模拟135°颈干角组件(美国佛罗里达州那不勒斯市Arthrex公司的Univers Revers)一致。关节盂定位参数包括:(1)外侧偏移(0 - 10毫米,以2毫米增量),(2)下方偏移(0、2.5、5、7.5毫米),以及(3)后方偏移(0、2.5、5毫米)。然后针对不同的定位参数(下方、后方和外侧偏移)以及下方0毫米和后方2.5毫米偏移且外侧化0 - 10毫米、下方2.5毫米和后方0毫米偏移且外侧化(0 - 10毫米)以及下方2.5毫米和后方2.5毫米偏移且外侧化(0 - 10毫米)的组合,分析外展0°和60°时的外旋(ER)以及外展60°时的内旋(IR)。
较低CSA模型显示出较高的0°外旋值(例如,在外侧、下方和后方偏移0毫米时,从CSA 32°到CSA 23°增加435%),而CSA较大的模型显示出较高的60°内旋值(例如,在外侧、下方和后方偏移0毫米时,从CSA SD 23°到CSA SD 32°增加505%)。通过外侧化,所有CSA模型的ROM均增加(例如,对于CSA 32°,0°外旋从0毫米外侧化到10毫米增加884%)。2.5毫米和5毫米的后方定位改善了外旋而非内旋。根据评估的CSA,在无后方、下方偏移2.5毫米且外侧化2 - 6毫米时可实现60°时的最大内旋。
特定的CSA范围需要特定的植入物定位策略来优化rTSA中的无撞击ROM。为了在该模拟中实现内旋和外旋的最大ROM组合,对于CSA≥30°,需要下方偏移2.5毫米、无后方偏移且外侧化4毫米;对于CSA SD≤25°,需要下方偏移2.5毫米、无后方偏移且外侧化6毫米。