Mittelman Moshe, Israel Ariel, Oster Howard S, Leshchinsky Michael, Ben-Shlomo Yatir, Kepten Eldad, Dolberg Osnat Jarchowsky, Balicer Ran, Shaham Galit
Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
Br J Haematol. 2025 Aug;207(2):387-394. doi: 10.1111/bjh.20136. Epub 2025 Jun 16.
Multiple myeloma evolves unnoticed over years, and when diagnosed, organ damage is common. Electronic health records (EHR) can help in developing predictive models identifying 'healthy' people at risk. MM patients from Clalit Health Services (2002-2019) were matched with healthy controls. Stage I: EHR from 5 years prior to MM diagnosis were reviewed and >200 parameters were compared (patients vs. controls). Stage II: Establishing xgboost model predicting 5 year risk for MM, with validation. Stage III: A simplified logistic regression model for community, requiring 20 variables (Age; Hb; RBC; MCV; RDW; WBC; neutrophils; lymphocytes; monocytes; basophils; glucose; creatinine; total protein; albumin; calcium; uric acid; bilirubin; HDL-C; LDL-C; triglycerides). EHR from the pre-MM period of 4256 patients were compared to controls. Future MM patients had higher ESR, lower Hb, ANC, neutrophil/lymphocyte ratio, higher globulins and ferritin, more immune deficiencies, MDS and FMF. They took fewer tranquilizers, anti-diabetics and statins. Using labs from future MM (n = 19 129) and controls (n = 382 580, 20:1), a predictive model was developed (ROC AUC = 0.836). The simple LR model provided individual risk prediction for MM within 5 years (AUC = 0.72). Two models with machine learning predict the risk of myeloma in 'healthy' individuals within 5 years. The models can be used in practice.
多发性骨髓瘤多年来悄然发展,确诊时器官损害很常见。电子健康记录(EHR)有助于开发预测模型,识别有风险的“健康”人群。将克拉利特医疗服务机构(2002 - 2019年)的多发性骨髓瘤患者与健康对照进行匹配。第一阶段:回顾多发性骨髓瘤诊断前5年的电子健康记录,并比较200多个参数(患者与对照)。第二阶段:建立预测多发性骨髓瘤5年风险的xgboost模型并进行验证。第三阶段:建立一个适用于社区的简化逻辑回归模型,需要20个变量(年龄;血红蛋白;红细胞;平均红细胞体积;红细胞分布宽度;白细胞;中性粒细胞;淋巴细胞;单核细胞;嗜碱性粒细胞;葡萄糖;肌酐;总蛋白;白蛋白;钙;尿酸;胆红素;高密度脂蛋白胆固醇;低密度脂蛋白胆固醇;甘油三酯)。将4256例患者骨髓瘤前期的电子健康记录与对照进行比较。未来的多发性骨髓瘤患者血沉较高,血红蛋白、中性粒细胞绝对值、中性粒细胞/淋巴细胞比值较低,球蛋白和铁蛋白较高,免疫缺陷、骨髓增生异常综合征和家族性地中海热更多见。他们服用的镇静剂、抗糖尿病药和他汀类药物较少。利用未来多发性骨髓瘤患者(n = 19129)和对照(n = 382580,比例为20:1)的实验室检查结果,开发了一个预测模型(ROC曲线下面积= 0.836)。简单逻辑回归模型可提供5年内个体患多发性骨髓瘤的风险预测(曲线下面积= 0.72)。两个机器学习模型可预测“健康”个体5年内患骨髓瘤的风险。这些模型可应用于实际。