Cheng Wei, Tian Yu, Na Meng
School of Sports Media, Guangzhou Sport University, Guangzhou, China.
Graduate School of Business, Universiti Kebangsaan Malaysia, Selangor, Malaysia.
Brain Behav. 2025 Jun;15(6):e70593. doi: 10.1002/brb3.70593.
This study explores the impact of AI-driven personalization, interactive features, and real-time feedback on user engagement and experience among marathon enthusiasts.
By integrating uses and gratifications theory (UGT), self-determination theory (SDT), and the technology acceptance model (TAM), the research examines how these AI-driven elements influence user behavior on marathon-related social media platforms. A quantitative approach using partial least squares structural equation modeling (PLS-SEM) was applied to data from 400 Chinese marathon enthusiasts.
The findings reveal that AI-driven personalized content significantly enhances user engagement and experience, with user engagement partially mediating this relationship. Interactive features are crucial for building a sense of community but have a less direct impact on user experience. Real-time feedback significantly improves user engagement, particularly for users with higher technological proficiency.
This research contributes to the understanding of user engagement in AI-enhanced environments and provides practical insights for designing more personalized and interactive platforms for marathon enthusiasts. Future studies should explore the long-term effects, cultural factors, and ethical considerations of AI-driven personalization.
本研究探讨人工智能驱动的个性化、交互功能和实时反馈对马拉松爱好者用户参与度和体验的影响。
通过整合使用与满足理论(UGT)、自我决定理论(SDT)和技术接受模型(TAM),该研究考察了这些人工智能驱动的元素如何影响马拉松相关社交媒体平台上的用户行为。采用偏最小二乘结构方程模型(PLS-SEM)的定量方法对400名中国马拉松爱好者的数据进行了分析。
研究结果表明,人工智能驱动的个性化内容显著提高了用户参与度和体验,用户参与度在这种关系中起到部分中介作用。交互功能对于建立社区感至关重要,但对用户体验的直接影响较小。实时反馈显著提高了用户参与度,尤其是对于技术熟练程度较高的用户。
本研究有助于理解人工智能增强环境中的用户参与度,并为设计更个性化、更具交互性的马拉松爱好者平台提供了实际见解。未来的研究应探讨人工智能驱动的个性化的长期影响、文化因素和伦理考量。