Aldosari Abdullah M, Azpiazu-Flores Francisco X, Azer Shereen, Schricker Scott R, Lee Damian, Johnston William M
Former Prosthodontics Resident, Division of Restorative and Prosthetic Dentistry, College of Dentistry, The Ohio State University, Columbus, Ohio; and Assistant Professor, Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.
Assistant Professor, Division of Restorative and Prosthetic Dentistry, College of Dentistry, The Ohio State University, Columbus, Ohio.
J Prosthet Dent. 2025 Aug;134(2):472.e1-472.e7. doi: 10.1016/j.prosdent.2025.04.010. Epub 2025 Jun 16.
Research on the bonding between hard liners and contemporary computer-aided design and computer-aided manufacture (CAD-CAM) denture base polymers treated with different surface treatments is lacking.
The purpose of this in vitro study was to evaluate the tensile bond strength of 2 extensively used hard liners on specimens fabricated with heat-polymerized polymethylmethacrylate (PMMA), milled PMMA, and a photopolymer for 3-dimensional (3D) printing denture bases and to assess the effect of the surface treatment on the bond strength.
Denture base specimens were fabricated with 3 different denture base polymers (Lucitone 199; Dentsply Sirona, IvoBase CAD; Ivoclar AG, and NextDent Denture 3D+; NextDent B.V). Using a balanced full-factorial experimental design, specimens of each group were treated with 1 of 2 surface treatments: the manufacturer's bonding agent or a light-polymerized methacrylate primer (Visio.Link; bredent UK Ltd) and subsequently relined with GC Reline (GC America Inc) or MucoHard (Parkell Inc). All specimens underwent a thermocycling regime simulating 5 years of intraoral service. Subsequently, for specimens that survived the thermocycling, the tensile bond strength was evaluated with a universal testing machine. Data were analyzed using 3-way analysis of variance (ANOVA) and post hoc Bonferroni-corrected pairwise comparisons (α=.05).
A significant 3-way interaction was found (P<.001) between the 2 materials being bonded and the surface treatment, with the light-polymerized methacrylate primer providing greater bond strength when bonding MucoHard to the 3D printed denture base material (P<.001) but leading to a lower bond strength for some other bonding situations (P≤.005). Additionally, when bonding to heat-polymerized PMMA, a greater bond strength was found for MucoHard over GC Reline when using the manufacturer's bonding agent (P=.009).
The surface treatment affects the bond strength of hard liners bonded to CAD-CAM and traditional denture base materials. The light-polymerized methacrylate primer evaluated may be used to enhance the bonding of hard liners to denture base polymers with chemical formulations other than PMMA.
缺乏关于硬衬里与经过不同表面处理的当代计算机辅助设计和计算机辅助制造(CAD-CAM)义齿基托聚合物之间粘结的研究。
本体外研究的目的是评估两种广泛使用的硬衬里在热聚合聚甲基丙烯酸甲酯(PMMA)、铣削PMMA以及用于三维(3D)打印义齿基托的光聚合物制成的标本上的拉伸粘结强度,并评估表面处理对粘结强度的影响。
用3种不同的义齿基托聚合物(Lucitone 199;登士柏西诺德公司,IvoBase CAD;义获嘉伟瓦登特公司,以及NextDent Denture 3D+;NextDent公司)制作义齿基托标本。采用平衡全因子实验设计,每组标本用两种表面处理方法之一进行处理:制造商的粘结剂或光聚合甲基丙烯酸酯底漆(Visio.Link;英国bredent公司),随后用GC Reline(美国GC公司)或MucoHard(美国Parkell公司)进行重衬。所有标本都经历了模拟5年口腔内使用的热循环过程。随后,对于在热循环后幸存的标本,用万能试验机评估拉伸粘结强度。使用三因素方差分析(ANOVA)和事后Bonferroni校正的成对比较(α = 0.05)对数据进行分析。
在被粘结的两种材料和表面处理之间发现了显著的三因素交互作用(P < 0.001),当将MucoHard粘结到3D打印义齿基托材料时,光聚合甲基丙烯酸酯底漆提供了更高的粘结强度(P < 0.001),但在其他一些粘结情况下导致较低的粘结强度(P≤0.005)。此外,当粘结到热聚合PMMA时,在使用制造商的粘结剂时,发现MucoHard比GC Reline具有更高的粘结强度(P = 0.009)。
表面处理会影响硬衬里与CAD-CAM及传统义齿基托材料之间的粘结强度。所评估的光聚合甲基丙烯酸酯底漆可用于增强硬衬里与非PMMA化学配方的义齿基托聚合物之间的粘结。